Exceptional collections on arithmetic toric varieties (joint with Matthew Ballard and Alexander Duncan)

Patrick K. McFaddin

University of South Carolina

K-theory ICM Satellite Conference Workshop

Let k be a field and \overline{k} its algebraic closure.

Definition

A *k*-torus is an algebraic group *T* over *k* such that $T_{\bar{k}} := T \times_{\text{Spec}(k)} \text{Spec}(\bar{k}) \cong (\bar{k}^{\times})^n$.

Examples

- the split torus $\mathbb{G}_m^n = (k^{\times})^n$
- the circle group $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$; note that $S^1_{\mathbb{C}} \cong \mathbb{C}^{\times}$.
- the Weil restriction R_{C/ℝ}(C[×]) (this is C[×] viewed as a real variety); note that R_{C/ℝ}(C[×])_C ≅ (C[×])².

Definition

An arithmetic toric variety is a (smooth, projective) normal variety together with a faithful action of a torus which has a dense open orbit. A toric variety with torus T is split if T is a split torus.

Example: split toric varieties

- (products of) projective space: $\mathbb{G}_m^n \subset \mathbb{A}^n \subset \mathbb{P}^n$
- if $T = \mathbb{G}_m^n$, then $X = X(\Sigma)$ for $\Sigma \subset \mathbb{Z}^n = \operatorname{Hom}(\mathbb{G}_m, T)$

Non-split arithmetic toric varieties

Example

- the real conic $\left\{(x:y:z)\in\mathbb{P}^2_{\mathbb{R}}\mid x^2+y^2+z^2=0
 ight\}=\mathsf{SB}(\mathbb{H})$
- toric variety with torus S¹
- $\bullet \ \text{over} \ \mathbb{C},$ this is \mathbb{P}^1 with torus \mathbb{C}^\times

Example

- real projective space $\mathbb{P}^1_{\mathbb{R}}$
- toric variety for two distinct tori: \mathbb{R}^{\times} and S^1

Example

- \bullet the Weil restriction $R_{\mathbb{C}/\mathbb{R}}(\mathbb{P}^1_{\mathbb{C}})$
- toric variety with torus $\mathsf{R}_{\mathbb{C}/\mathbb{R}}(\mathbb{C}^{\times})$
- $\bullet \,$ over $\mathbb{C},$ this is $\mathbb{P}^1\times \mathbb{P}^1$ with torus $(\mathbb{C}^\times)^2$

For a *k*-scheme *X*, let $D^{b}(X) = D^{b}(\operatorname{coh}(X))$ denote the bounded derived category of coherent sheaves on *X*.

Definition

An object E in $D^{b}(X)$ is exceptional if

- $\operatorname{Ext}^{n}(E, E) = \operatorname{Hom}(E, E[n]) = 0$ for all $n \neq 0$, and
- End(*E*) is a division *k*-algebra of finite dimension

Definition

A sequence $E = \{E_1, ..., E_s\}$ of exceptional objects is an exceptional collection if $Ext^n(E_i, E_j) = 0$ for all *n* whenever i > j.

- E is full if it generates $D^{b}(X)$.
- E is strong if $\operatorname{Ext}^n(E_i, E_j) = 0$ for all $n \neq 0$.

Exceptional collections

An exceptional collection $\{E_1, ..., E_n\}$ on a scheme *X* induces an isomorphism on *K*-theory

$$K_{\mathcal{P}}(X) \cong \bigoplus_{i} K_{\mathcal{P}}(D_i),$$

where $End(E_i) = D_i$.

Example

(Beilinson) The set {O, O(1), ..., O(n)} is a full strong exceptional collection of line bundles on Pⁿ.

• $\mathbb{P}^1 \times \mathbb{P}^1$ has full strong exceptional collection given by $\{\mathcal{O}, \mathcal{O}(1,0), \mathcal{O}(0,1), \mathcal{O}(1,1)\}$, where $\mathcal{O}(i,j) = \pi_1^* \mathcal{O}(i) \otimes \pi_2^* \mathcal{O}(j)$.

Theorem (Kawamata)

Every split toric variety has a full exceptional collection.

P. K. McFaddin (So. Carolina)

Exceptional collections on toric varieties

Example: the real conic $X = \{x^2 + y^2 + z^2 = 0\} \subset \mathbb{P}^2_{\mathbb{R}}$

- $X_{\mathbb{C}} \cong \mathbb{P}^1$
- $X = SB(\mathbb{H})$, where \mathbb{H} denotes Hamilton's quaternions.
- X has a full strong exceptional collection $\{\mathcal{O}_X, \mathcal{F}\}$
- $End(\mathcal{F}) \cong \mathbb{H} \text{ and } \mathcal{F}_{\mathbb{C}} \cong \mathcal{O}_{\mathbb{P}^1}(1) \oplus \mathcal{O}_{\mathbb{P}^1}(1).$

Example: Weil restriction $Y = R_{\mathbb{C}/\mathbb{R}}(\mathbb{P}^1_{\mathbb{C}})$

- $Y_{\mathbb{C}} \cong \mathbb{P}^1 \times \mathbb{P}^1$
- Y has a full strong exceptional collection $\{\mathcal{O}_Y, \mathcal{G}, \mathcal{H}\}$
- $End(\mathcal{G}) \cong \mathbb{C}$ and $\mathcal{G}_{\mathbb{C}} \cong \mathcal{O}(1,0) \oplus \mathcal{O}(0,1)$
- $\operatorname{End}(\mathcal{H}) \cong \mathbb{R} \text{ and } \mathcal{H}_{\mathbb{C}} \cong \mathcal{O}(1,1)$

Descent of exceptional collections

Let X be a scheme with an action of a finite group G.

Definition

A set of objects E in $D^{b}(X)$ is *G*-stable if for all $A \in E$ and all $g \in G$ there exists $B \in E$ such that $g^*A \cong B$.

Theorem (Ballard, Duncan, M.)

Let X be a k-scheme and L/k a G-Galois extension. Then X_L admits a G-stable exceptional collection if and only if X admits an exceptional collection.

Moreover, if one collection is full/strong/of sheaves/of vector bundles, then so is the other.

Note that if E is a *G*-stable exceptional collection consisting of line bundles on X_L , the resulting collection on X may not consist of line bundles.

Definition

A *G*-lattice *M* is a free \mathbb{Z} -module with an action of *G*, i.e., a homomorphism $G \to GL(M) \cong GL_n(\mathbb{Z})$. A *G*-lattice is a permutation lattice if it has a basis which is permuted by *G*.

Theorem (Merkurjev, Panin '97)

Let *X* be a toric variety with splitting field L/k and G = Gal(L/k). Then $K_0(X_L)$ is a *G*-lattice which is a direct summand of a permutation lattice.

Question

Is $K_0(X_L)$ a permutation lattice?

Notice that the existence of a full exceptional collection on X provides an affirmative answer.

P. K. McFaddin (So. Carolina)

Theorem

The following possess full exceptional collections of sheaves:

- Severi-Brauer varieties (Bernardara '09)
- dP₆ (Blunk, Sierra, Smith '11)
- toric surfaces (Xie, BDM '17)
- toric Fano 3-folds (BDM)
- all forms of 43 of the 124 split toric Fano 4-folds (BDM)
- all forms of centrally symmetric toric Fano varieties (BDM; Castravet, Tevelev)
- all forms in characteristic zero of toric varieties corresponding to Weyl fans of root systems of type *A* (BDM; Castravet, Tevelev)

X a toric variety, X_L split with fan Σ

- assume X_L admits an exceptional collection of line bundles
- G = Gal(L/k) acts on X_L so preserves Σ , and thus preserves $\Sigma(1)$
- $\Sigma(1) \leftrightarrow \operatorname{Div}_{T_L}(X_L)$
- this induces an action of G on Pic(X_L) which is completely determined by the action on Σ

Thus, to check *G*-stability, suffices to check $Aut(\Sigma)$ -stability.

- methods of Bondal and Uehara give stable collections for the 3-fold and 4-fold cases using the toric Frobenius
- the centrally symmetric results use an exceptional collection independently discovered by Castravet and Tevelev.
- the root system result builds on work of Castravet and Tevelev on equivariant derived categories.

¡Muchas gracias!