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Introduction-Moduli Problem

Recall that in our first construction of the compact space Mo,n, we took as our moduli
problem the functor which associates to each scheme B a flat family of stable n-pointed
trees of P1’s over B. Similarly, for the Hassett spaces M0,−→c , our moduli functor associates
to each scheme B a flat family of stable −→c -weighted trees of P1’s over B (with an appro-
priately modified stability condition). Notice that in each case our stability conditions only
allow nodal singularities. That is, our singularities are locally analytically isomorphic to
2-dimensional coordinate axes.

We will now proceed in a similar fashion, with a slight modification to our allowable singu-
larities. To each scheme B, we will associate a flat family of stable weighted trees of Veronese
curves over B (also called quasi-Veronese curves). However, in this case our stability con-
dition will allow for multinodal singularities, which are locally analytically isomorphic to
n-dimensional coordinate axes.

1 The Veronese Embedding and Rational Normal Curves

Definition 1.1. Let n, d ∈ Z+. Let M0, ...,MN be all the monomials of degree d in (n+ 1)
variables x0, ..., xn. Notice that N =

(
n+d
d

)
. For a = [a0 : · · · : an], define

νd : Pn −→ PN

[ao : · · · : an] 7→ [M0(a) : · · · : MN (a)].

This gives an injective morphism of varieties called the d-uple or Veronese embedding of
Pn in PN . We can see that this map is well-defined, for if we take any other point in the
equivalence class of [a0 : · · · : an], say [λa0 : · · · : λan] for λ ∈ C∗, then we have

[λa0 : · · · : λan] 7→ [λdM0(a) : · · · : λdMN (a)],

which is equal to [M0(a) : · · · : MN (a)] in PN . It is a morphism as it is a polynomial map
in each coordinate. Injectivity is left as an exercise.
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In the case n = 1, we have
νd : P1 −→ Pd

[a0 : a1] 7→ [ad0 : ad−10 a1 : ad−20 a21 : · · · : a0ad−11 : ad1].

The image of νd is called the rational normal curve of degree d in Pd.

Example 1.2. (Twisted Cubic) Consider the 3-uple embedding

ν3 : P1 −→ P3

given by
[a0 : a1] 7→ [a30 : a20a1 : a0a

2
1 : a31].

We would like to see that Im ν3 ⊂ P3 is in fact a projective subvariety of P3. That is,
Im ν3 = Z(q) for some homogeneous ideal qC k[x, y, z, t]. Let

q = (xt− yz, y2 − xz, z2 − yt).

Of course q is homogeneous, as it is generated by homogeneous elements. To see that
Im ν3 = Z(q), we notice that one inclusion is clear: if [b0 : b1 : b2 : b3] ∈ Im ν3, then

b0 = a30,

b1 = a20a1,

b2 = a0a
2
1,

b3 = a31

for some [a0 : a1] ∈ P1. Then of course [b0 : b1 : b2 : b3] satisfies the defining equations of q
and so Im ν3 ⊂ Z(q). The reverse inclusion is left as an exercise to the reader.

For a visual interpretation, let us consider the affine patch where a0 = 1. Then our
twisted cubic will have points of the form

(a30, a
2
0a1, a0a

2
1, a

3
1) = (1, a1, a

2
1, a

3
1).

Thus, the graph of our twisted cubic is given by

{(a, a2, a3) ∈ A3 | a ∈ C}.

2 Ud,n and the SLd+1-Action

Recall that the Hilbert scheme Hilbp(x)(X) is a scheme whose points correspond to closed
subschemes of X with Hilbert polynomial p(x). We will be concerned with the compact
Hilbert scheme Hilbdx+1(Pd). For if X ∈ Hilbdx+1(Pd), we have seen that for n ∈ Z,

p(n) = χ(OX(n)).
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Thus, we have
1 = p(0)

= χ(OX)
= h0(OX)− h1(OX)
= 1− h1(OX)
= 1− g

and so X is genus 0. Since deg(dx+ 1) = 1 we have dimX = 1. Also,

degX = [deg p(x)]! · [leading coefficient of p(x)]
= 1! · d
= d

Thus, Hilbdx+1(Pd) contains all genus 0 curves of degree d in Pd and so contains Vd, the
collection of degree d rational normal curves. Let Hd ⊂ Hilbdx+1(Pd) denote the closed
component of rational normal curves of degree d and their degenerations. One may identify
Hd as the closure of Vd in Hilbdx+1(Pd).

We may also describe this locus in terms of another object: the Chow variety. Define the
Chow variety, Chow(1, d,Pd), as the variety which parameterizes curves or 1-cycles (Z-linear
combinations of 1-dimensional, irreducible, closed subschemes) of degree d in Pd. We will
use Cd to denote the irreducible component which parameterizes rational normal curves and
their limit cycles or degenerations. Define

Ud,n = {(X, p1, ..., pn) ∈ Cd × (Pd)n | pi ∈ X ∀i}.

That is, an element of Ud,n is a quasi-Veronese curve or tree of rational normal curves which
has n marked points.

Example 2.1. Let X be the twisted cubic above and let p = [1 : 1 : 1 : 1]. Then (X, p) ∈ U3,1.
If q = [12 : 1 : 2 : 4], then (X, p, q) ∈ U3,2.

There is a natural action of SLd+1 on Ud,n. To see this, let us think of Pd as the
projectivization of a (d+ 1)-dimensional vector space V . That is, Pd ∼= PV , where

PV := {W ≤ V | dimW = 1}.

We have an action of GLd+1 on V by left matrix multiplication. Define the projective linear
group

PGLd+1 := GLd+1 /Z(GLd+1),

where Z(GLd+1) is the center of GLd+1. Then we have an induced action of PGLd+1 on PV .
In particular, the only difference between the PGLd+1-action and the GLd+1-action is that
the former is effective. That is, no nontrivial element of PGLd+1 acts trivially. Another
way of saying this is that if we act by a matrix(

a b
c d

)(
λ1
λ2

)
=

(
A
B

)
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then multiplying each entry of our matrix by a nonzero scalar α gives(
αa αb
αc αd

)(
λ1
λ2

)
=

(
αA
αB

)
,

which is the same point as (A,B) in projective space. Since these matrices act the same,
we identify them in the quotient. Finally, we have an inclusion

SLd+1 ↪→ GLd+1 .

Following this with the quotient map

SLd+1 ↪→ GLd+1 � PGLd+1

yields an action of SLd+1 on Pd. The reason we would like to have an action of SLd+1 is
that many theorems concerning quotients by group actions (GIT quotients) require that
the acting group be semisimple.

3 GIT Quotients

We now want to introduce the quotient spaces Ud,n// SLd+1. We will see that these are
alternative compactifications of M0,n and solve the moduli problem given above. Moreover,
these spaces receive maps from the Hassett spaces discussed earlier. Unfortunately, defining
the quotient for schemes and varieties by a group action tends to be a complicated matter.
In some cases, the quotient does not properly detect the different orbits given by the group
action. We give an example of this situation below. In general, given a variety and a group
action, the quotient by this group action may not actually be a variety. To fix this problem,
we take the quotient of a subset of our variety which consists of “good” points. That is, we
throw out “bad” points and only consider points which are well-behaved under the group
action.

Example 3.1. Let C∗ act on A2 via λ · (a1, a2) = (λa1, λa2). Then the orbits of this action
are lines through the origin. In particular, all of the orbits intersect, and thus our quotient
is a single point.

However, if we let C∗ act on A2 \O, our quotient becomes P1. In this case, the smallest
closed, C∗-invariant subsets are exactly the orbits of our action. Additionally, two different
orbits are mapped to two different points, contrary to the result of the action on A2 above. A
quotient with such desirable properties is called a good geometric quotient. In this situation,
we see that O is a bad point with respect to this action. In the talk to follow, we examine
how to distinguish good points and bad points and explore the machinery of GIT (geometric
invariant theory) quotients.
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