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1 K0 of a Ring (J. Tenini)

1.1 General Construction

We will assume basic familiarity with groups, rings and modules.

Definition 1.1. Let R be a ring. An R-module P is said to be projective if it satisfies the
following equivalent conditions:
(1). There is an R-module Q such that P ⊕Q is free.
(2). Given modules N1, N2 and R-module homomorphisms g : N1 −→ N2 surjective and
h : P −→ N2, there exists a unique R-module homomorphism f : P −→ N1 such that the
following diagram commutes:

P

N1 N2
g

h

∃f

(3). Given an R-module N and a surjective R-module homomorphism π : N −→ P , then
there is an injective R-module homomorphism i : P −→ N such that π ◦ i = IdP .

Remark 1.2. In particular, we will only be interested in finitely generated projective mod-
ules.

Example 1.3. The most obvious class of projective modules are free modules. Free modules
are clearly projective if we consider Definition 1.1 (1), taking Q to be the trivial module.

Example 1.4. If R is a principal ideal domain and M is a finitely generated R-module, a
basic structure theorem from linear algebra yields the isomorphism M ∼= F ⊕Mt where
F is a free R-module and Mt is a torsion R-module. As stated above, a free module is
projective. When R is a PID, we have that the converse is also true. For if P is a projective
R-module, there is some R-module Q with P ⊕Q free. Then M is torsion-free and by the
aforementioned structure theorem we have that M is free.

At this point, the reader may be wondering if in fact all projective modules are free. The
following example shows this is not the case.

Example 1.5. Z/2Z as a Z/6Z-module is projective but not free.

Definition 1.6. Let R be a ring. We define the Grothendieck Group K0R as the Abelian
group with the following generators and relations:
(G): Take one generator [P ] for each isomorphism class in the category of finitely generated
projective R-modules.
(R): [P ] + [Q] = [P ⊕Q] for every pair, P, Q, of finitely generated projective R-modules.

Remark 1.7. Each element of K0R may be written in the form [P ]− [Q].

Proposition 1.8. If R is a PID, then K0R ∼= Z.
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Proof. Over a PID, an R-module is projective if and only if it is free. Thus, projective R-
modules are determined up to isomorphisms by their rank, and the direct sum of projective
modules corresponds to the sum of the respective ranks.

Definition 1.9. Let P and Q be finitely generated projective R-modules. We say P and
Q are stably isomorphic if there is some n ∈ Z+ such that P ⊕Rn ∼= Q⊕Rn.

Proposition 1.10. Let P and Q be finitely generated projective R-modules. Then [P ] = [Q]
in K0R if and only if P and Q are stably isomorphic.

Proof. (⇐) If P ⊕ Rn ∼= Q ⊕ Rn, then [P ] + [Rn] = [Q] + [Rn] in K0R. Since K0R is a
group, it follows that [P ] = [Q].
(⇒) *To be completed.

1.2 The Tensor Product

When R is commutative, we have an equivalence of categories between ModR, the category
of right R-modules, and RMod the category of left R-modules. In this situation, the tensor
product makes K0R into a ring. Also, given any homomorphism of rings f : R −→ S, the
tensor product enables one to view R-modules as S-modules in a natural way, giving rise
to the induced homomorphism of groups K0f : K0R −→ K0S.

Definition 1.11. Let R, S, and T be rings. Let M be an R-S bimodule and N an S-T
bimodule. Define M ⊗S N to be the following R-T bimodule:
As an Abelian group, it is generated by the symbols m ⊗ n (m ∈ M , n ∈ N) with the
following relations:
(1). (m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n
(2). m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2

(3). ms⊗ n = m⊗ sn.

The left action is given by r(m⊗ n) = rm⊗ n and the right action is given by (m⊗ n)t =
m⊗ nt.

Remark 1.12. Alternatively, if one prefers the language of category theory, one can define
the tensor product M ⊗S N as the initial object in the category C where

Ob(C) = {ϕ : M ×N −→ A | ϕ is balanced and bilinear andA is anR− T bimodule}

and
Mor(C) = {ψ : F −→ G | F andG areR− T bimodules}.

Proposition 1.13. Let R be a commutative ring and let P and Q be finitely generated
projective R-modules. Then P , Q and P ⊗R Q are R-R bimodules. Moreover, P ⊗R Q is a
finitely generated projective R-module.
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Proof. The R-R bimodule structure of P , Q and P ⊗R Q is clear. Let P ′ and Q′ be R-
modules such that P ′ ⊕ P ∼= Rn and Q′ ⊕Q ∼= Rm. Then

(P ⊗R Q)⊕ (P ⊗R Q′)⊕ (P ′ ⊗R Q)⊕ (P ′ ⊗R Q′) ∼= (P ⊕ P ′)⊗R (Q⊕Q′)
∼= Rn ⊗R Rm
∼= Rnm.

Thus, P ⊗R Q is free.

Remark 1.14. One can check that defining [P ][Q] = [P ⊗R Q] makes K0R into a ring.

Let f : R −→ S be a homomorphism of rings. One can then think of S as a right R-module
via s · r = sf(r). One can also regard S as a left S-module and so S is an S-R bimodule.
Thus, if P is an R-module, define S ⊗f P := S ⊗R P .

Remark 1.15. S ⊗f R ∼= S

Remark 1.16. If P is finitely generated projective R-module, and P ⊕Q ∼= Rn, then

(S ⊗f P )⊕ (S ⊗f Q) ∼= S ⊗f (P ⊕Q)
∼= S ⊗f Rn
∼= (S ⊗f R)n

∼= Sn.

Thus, S ⊗f P is a finitely generated projective S-module.

We can now define the induced group homomorphism K0f : K0R → K0S, via [P ] 7→
[S ⊗f P ]. Thus, one can define K0 as a functor K0 : Ring −→ Ab.

2 K0 as a Functor (J. Tenini)

Definition 2.1. Let C and D be categories. A covariant functor F : C −→ D is a mapping
which to each object X ∈ Ob(C) associates an object F (X) ∈ Ob(D), and to each morphism
f : X −→ Y associates a morphism F (f) : F (C) −→ F (D) satisfying the following:

(FUN 1). F (IdX) = IdF (X), for all X ∈ Ob(C),

(FUN 2). F (g ◦ f) = F (g) ◦ F (f) for all morphisms f : X −→ Y and g : Y −→ Z.

Example 2.2. Some covariant functors: Fundamental Group, π1 : Top −→ Grp; Homology
(simplicial, singular, cellular), Hn(•, R) : Top −→ModR.

Definition 2.3. A contravariant functor G : C −→ D is a covariant functor G : C −→ Dop.

Example 2.4. Some contravariant fuctors: Global Sections, Γ : Var −→ Rings; Spectrum
of a ring, Spec : CRings −→ Top.
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In the previous lecture, it was shown that if P is a finitely generated projective R-module
and if f : R −→ S is a homomorphism of rings, then S⊗f P is a finitely generated projective
S-module. It remains to show that this map ([P ] 7→ [S ⊗f P ]) is well-defined.

Let [P ] = [Q]. Then Rn ⊕ P ∼= Rn ⊕Q for some n ∈ Z. Then we have

S ⊗f (Rn ⊕ P ) ∼= S ⊗f (Rn ⊕Q),

⇒ (S ⊗f Rn)⊕ (S ⊗f P ) ∼= (S ⊗f Rn)⊕ (S ⊗f Q),

⇒ Sn ⊕ (S ⊗f P ) ∼= Sn ⊕ (S ⊗f Q).

Thus, our map is well-defined.

We also need to check that the morphism K0f induced by the ring homomorphism f :
R −→ S is in fact a group homomorphism.

Let [P ] and [Q] be in K0R. Then we have

K0f([P ] + [Q]) = K0([P ⊕Q])
= [S ⊗f (P ⊕Q)]
= [(S ⊗f P )⊕ (S ⊗f Q)]
= [(S ⊗f P )] + [(S ⊗f Q)]
= K0f([P ]) +K0f([Q]).

Remark 2.5. If R and S are commutative rings then K0f is a homomorphism of rings.

Finally, we need to ensure that K0 satsifies the properties of functors stated in Definition
2.1 above.

(FUN 1) Let IdR : R −→ R be the identity map.

K0(IdR)([P ]) = [R⊗IdR P ]
= [R⊗R P ]
= [P ].

(FUN 2) Let f : R −→ S and g : S −→ T be ring homomorphisms. Then

K0(g ◦ f)([P ]) = [T ⊗g◦f P ]
= [(T ⊗g S)⊗f P ]
= [T ⊗g (S ⊗f P )]
= (K0(g) ◦K0(f))([P ]),

as desired.
Thus, K0 : Rings −→ Ab and K0 : CRings −→ CRings are functors.
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3 K0 of an Abelian Category (J. Tenini)

Definition 3.1. An additive category C is a category satisfying the following conditions:
(1). C contains a 0 object, i.e. an object that is both initial and final.
(2). C contains all finite products A×B
(3). Every set Hom(A,B) is given the structure of an abelian group in such a way that
composition is bilinear.

Remark 3.2. It follows in fact that in an additive category, finite products and coproducts
exist and are the same.

Remark 3.3. Composition being bilinear means that for maps, f, f ′ : A −→ B, g, g′ : B −→
C, then

(g + g′) ◦ (f + f ′) = g ◦ f + g′ ◦ f + g ◦ f ′ + g′ ◦ f ′

Example 3.4. The archetypal example to bear in mind throughout this discussion of additive
categories is, of course, the category of Abelian groups.

Definition 3.5. An additive Abelian category A is an additive category in which:
(1). Every morphism f : B −→ C has a kernel and cokernel.
(2). Every monomorphism is a kernel and every epimorphism is a cokernel.

Definition 3.6. The kernel of a morphism f : X −→ Y is an object K with a morphism
k : K −→ X such that for any other k′ : K ′ −→ X, we have a unique map g : K ′ −→ K
such that the following diagram commutes:

X

K Y

K ′

f

k′

0

k

0

Definition 3.7. The cokernel of a morphism f : X −→ Y is an object Q with a morphism
q : Y −→ Q such that for any other q′ : Y −→ Q′, we have a unique map g : Q −→ Q′ such
that the following diagram commutes:

X

Q Y

Q′

f

k′

0

k

0
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Definition 3.8. A morphism f is a monomorphism if:

f ◦ g1 = f ◦ g2 ⇒ g1 = g2

Definition 3.9. A morphism f is an epimorphism if:

g1 ◦ f = g2 ◦ f ⇒ g1 = g2

Remark 3.10. It is a useful exercise to verify that these category theoretic terms have the
following translations when working with Abelian groups:
(1). Monomorphism = Injective Homomorphism
(2). Epimorphism = Surjective Homomorphism
(3). Kernel = Kernel
(4). Cokernel = Codomain/Image

Definition 3.11. In an Abelian category, we say a sequence

A B C
f g

is exact at B if ker g = im f := ker(B −→ coker f)

Definition 3.12. A category C is small if both Ob(C) and Mor(C) are sets (and not proper
classes). A subcategory S of C is a skeleton of C if the inclusion functor is an equivalence
of categories and no two objects of S are isomorphic. A category C is said to be skeletally
small if there is a skeleton S of C that is small.

Definition 3.13. Let A be a skeletally small additive Abelian category. Its Grothendieck
Group K0(A) is the Abelian group presented as having one generator [A] for each object,
with one relation

[A] = [A′] + [A′′]

for every short exact sequence:

0 −→ A′ −→ A −→ A′′ −→ 0

Example 3.14. Let’s compute K0(A) where A is the category of finitely generated Abelian
groups: By the structure theorem for finitely generated modules over a PID, if G is a finitely
generated Abelian group, then we have:

G = Zn ⊕ Z/m1Z⊕ Z/m2Z⊕ · · · ⊕ Z/mtZ

Moreover, for any k ∈ Z+, the short exact sequence

0 −→ Z −→ Z −→ Z/kZ −→ 0

gives us that [Z] = [Z] + [Z/kZ] and so [Z/kZ] = [0]. Thus, using the structure theorem,
we have that K0(A) ∼= Z.
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4 Vector Bundles I (A. Brunyate)

Throughout this section, let k be a field.

Note that the category of free R-modules form a full subcategory of the category of R-
modules. Our goal is to define K0 in this subcategory.

Definition 4.1. A pseudo-Abelian category C is an additive subcategory such that every
idempotent splits.

That is, if p : E −→ E is a morphism in C such that p2 = p then ker(p) and ker(1− p) exist
and E = ker(p)⊕ ker(1− p).

Theorem 4.2. If C is an additive category, there exists a pseudo-Abelian category C̃ and
an additive functor f : C −→ C̃ such that if D is any other pseudo-Abelian category and
g : C −→ D is additive, then there exists a functor g′ : C̃ −→ D making the following
diagram commute:

C̃

D C
g

f
∃g′

Theorem 4.3. If C is an additive category, D a pseudo-Abelian category and g : C −→ D
a fully faithful additive functor where every object of D is a summand of an object in the
image of g, then the map g′, defined above, is an equivalence of categories.

Example 4.4. Let C be the category of finitely generated free R-modules. Then C̃ is the
category of finitely generated projective R-modules.

Example 4.5. Let X be a compact topological space. Let D be the category of trivial vector
bundles over X. Then D̃ is the category of vector bundles over X.

Definition 4.6. A quasi-vector bundle with base space X and fibre kn is a topology on∐
Ex such that the natural projection π : E −→ X is continuous.

Definition 4.7. Let A and B be vector bundles over a topological space X. A morphism
of quasi-vector bundles with base space X is a map f : A −→ B such that fx : Ax −→ Bx
is k-linear and such that the following diagram commutes:

A B

X

f

π π

Definition 4.8. A trivial quasi-vector bundle over X is the space X ×kn with the obvious
projection.
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4.1 Maps Between Trivial Vector Bundles

Theorem 4.9. Let V1, V2 be finite-dimensional vector spaces over k. A map ĝ : X −→
Hom(V1, V2) corresponds to the map gx on fibres for some quasi-vector bundle morphism
g : X × V1 −→ X × V2 if and only if ĝ is continuous.

Definition 4.10. A vector bundle A over X is a quasi-vector bundle over X such that there
exists an open cover {Ui}i∈I such that A|Ui is isomorphic to a trivial bundle.

Example 4.11. The Möbius band is a vector bundle over S1.

5 Vector Bundles II (A. Brunyate)

Example 5.1. (The Canonical Bundle on Pn−1) This is defined as the following subset
Pn−1×kn where the point (x, y) is in the subset if and only if y is on the line corresponding
to x.

5.1 Pullback of Vector Bundles

If f : X −→ Y is a map of topological spaces and E is a vector bundle over Y , we define

f∗(E) := Xf ×π E

i.e. f∗(E) = {(x, e) ∈ X × E | f(x) = π(e)}.
Example 5.2. If X −→ Pn, we can pull back the canonical bundle on Pn to get a special
line bundle on X.

5.2 Clutching of Bundles

Definition 5.3. Let {Vi}i∈I be an open cover of X and Ei a vector bundle over Vi with
projection map πi for all i ∈ I. Given isomorphism gij : Ei|Vi∩Vj −→ Ej |Vi∩Vj satisfying

gki|Vi∩Vj∩Vk = gkj |Vi∩Vj∩Vk ◦ gji|Vi∩Vj∩Vk

Then there exists a vector bundle E over X and isomorphisms gi : Ei −→ E|Vj such that
the following diagram commutes:

E|Vj∩Vi

Ei|Vi Ej |Vj
gij

gjgi

E here is called the clutching of the bundles Ei.

Example 5.4. (Tangent Bundles to differentiable manifolds:) Let Ui be an atlas for M , the
tangent bundle is obtained by gluing Ui×Rn using the derivative of the transition maps on
fibers.
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Definition 5.5. Let E be the category of finite dimensional k-vector spaces. We say that
a functor E −→ E is continuous if it induces a continuous map on Hom-spaces.

Example 5.6. Tensor Product, Sum, etc.

So, given a continuous functor φ : E −→ E , we can define a functor φ′ : E(X) −→ E(X) on
the category of vector bundles over X by taking a trivialization cover of a vector bundle E
over X and building φ′(E) by gluing together Ui × φ(kn) using φ applied to the fiber maps
in the original gluing.

Example 5.7. The functor E × E −→ E defined by (V1, V2) −→ V1 ⊕ V2 gives a functor

E(X)× E(X) −→ E(X)

which we denote by ⊕.

E1 ⊕ E2 E2

M

E1

f2

f1

∃!

Theorem 5.8. Let E be a vector bundle over X, p : E −→ E a map of vector bundles such
that p2 = p. Then ker(p) is a vector bundle over X.

Proof. We need to show local triviality. Since this is a local property, we can assume that
E = X × kn.
Trick: Write f(x) = 1− px − px0 + 2pxpx0 for some point x0 ∈ X.
Then we have

0 ker p X × kn X × kn

0 X × ker px X × kn X × kn

p

f̃ f̃

6 Algebraic Vector Bundles (P. McFaddin)

Throughout this section R will denote a commutative ring with identity and k will denote
an algebraically closed field.

We will continue to emphasize the breadth of K-theory by applying the theory to schemes
and varieties. After defining algebraic vector bundles on schemes (and therefore on vari-
eties), we will arrive at the scheme-theoretic analogue of the following theorem of Serre:

10



Theorem 6.1. (Serre, 1955) Let V be an affine algebraic variety. Then there is a one-to-
one correspondence between vector bundles over V and finitely generated projective modules
over Γ(V ) = k[x1, ..., xn]/I(V ), the coordinate ring of V .

We begin with a slew of definitions.

Definition 6.2. Let X be a topological space. A presheaf, F , of rings on X consists of
the following data:
(a). For each open U ⊆ X, a ring F (U).
(b). For each inclusion of open sets V ⊆ U , a ring homomorphism ρUV : F (U) −→ F (V ).

subject to the conditions

(0). F (ø) = (0), the zero ring.
(1). ρUU = IdF (U).
(2). If W ⊆ V ⊆ U then ρUW = ρVW ◦ ρUV .

Definition 6.3. A sheaf is a presheaf which also satisfies the following condition:
For each open set U ⊆ X, if {Ui}i∈I is an open cover of U , and if we have si ∈ F (Ui) for
each i, with the property that si|Ui∩Uj = sj |Ui∩Uj for each i, j ∈ I, then there is a unique
s ∈ F (U) such that s|Ui = si for each i.

Example 6.4. Let X be a topological space. Let Otop(U) = {f : U −→ R | f continuous}.
Then Otop is a sheaf on X. Similarly, we may define the sheaf of differentiable functions on
a differentiable manifold or the sheaf of holomorphic functions on a complex manifold.

Definition 6.5. A morphism of presheaves ϕ : F −→ G is a homomorphism of rings
ϕ(U) : F (U) −→ G (U) for each open set U such that the following diagram commutes:

F (U) G (U)

F (V ) G (V )

ϕ(U)

ρUV ρUV

ϕ(V )

If F and G are sheaves, we use the same definition for a morphism of sheaves.

Definition 6.6. Let f : X −→ Y be a continuous map of topological spaces. For any sheaf
F on X we define the direct image sheaf f∗F on Y by f∗F (V ) = F (f−1(V )) for any open
set V ⊆ Y .

Definition 6.7. A ringed space (X,OX) is topological space X and a sheaf of rings OX on
X. A morphism of ringed spaces from (X,OX) to (Y,OY ) is a pair (f, f#) consisting of a
continuous map f : X −→ Y and a morphism of sheaves f# : OY −→ f∗OX .

Definition 6.8. A locally ringed space is a ringed space such that for each point P ∈ X,
the stalk OX,P := lim−−→

p∈U
OX(U) is a local ring (has a unique maximal ideal mP ). A morphism

of locally ringed spaces is a morphism of ringed spaces which also satisfies the condition that
f#
P : OY,f(P ) −→ (f∗OX)P is a local homomorphism of rings. That is, (f#

P )−1(mP ) = mf(P )
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Example 6.9. Let R be a ring. Let SpecR denote the set of prime ideals of R. Let a be
an ideal in R. Let V (a) denote the set of all prime ideals containing a. We may define
a topology on SpecR by taking sets of the form V (a) to be the closed subsets of SpecR.
Now, define a sheaf of rings O on SpecR by setting

O(U) = {s : U −→
⋃
p∈U

Rp}

such that s(p) ∈ Rp for each p and s is locally a quotient of elements of R (here, Rp is the
localization of R at p). Then (SpecR,O) is a locally ringed space.

Definition 6.10. An affine scheme is a locally ringed space (X,OX) that is isomorphic to
SpecR for some ring R.

Definition 6.11. A scheme is a locally ringed space (X,OX) such that for each P ∈ X
there is an open set U containing P such that (U,OX |U ) is an affine scheme. A morphism
of schemes is a morphism of locally ringed spaces.

Example 6.12. Spec k[x1, ..., xn] =: Ank is an affine scheme and Spec Proj k[x0, ..., xn] =: Pnk
is a non-affine scheme. For a definition and construction of the latter see [Hart].

Definition 6.13. A sheaf of OX-modules or an OX -module F is a sheaf on X which
satisfies the following conditions:
(1). For each open U ⊂ X, F (U) is an OX(U)-module.
(2). For each inclusion U ⊆ V , the restriction map F (U) −→ F (V ) is an OX(U)-module
homomorphism.
A morphism of OX-modules ϕ : F −→ G is a sheaf morphism such that F (U) −→ G (U)
is OX(U)-linear.

Construction 6.14. Let R be a ring and let M be an R-module. We wish to construct
the sheaf associated to M on SpecR, denoted M̃ . This construction is quite similar to that
of the sheaf of rings O on SpecR given above. We proceed as follows: Let p ∈ SpecR and
let Mp be the localization of M at p. For U ⊆ SpecR, let M̃(U) = {s : U −→

⋃
p∈U Mp}

such that s(p) ∈Mp for each p and for each p ∈ U there exists a neighborhood V of p, there
exists m ∈M and f ∈ R such that for all q ∈ V , f /∈ q and s(q) = m

f in Mq.

Example 6.15. OX is an OX -module. M̃ defined above is an O-module, where O denotes
the sheaf of rings defined on SpecR.

Example 6.16. Let X be a topological space and let Otop be the sheaf of continuous real-
valued functions on X. Let ξ be an R-vector bundle over X and let Γ(ξ) be the set of all
sections of ξ over X. Then Γ(ξ) is an Otop-module.

Notation 6.17. Let (X,OX) be a scheme. Let ModOX denote the category of all OX -
modules.

Proposition 6.18. ModOX is an Abelian category.
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Definition 6.19. F is a free OX -module if F ∼=
⊕
OX . That is, F (U) ∼=

⊕
OX(U) as

an OX(U)-module, for each open U ⊆ X. F is locally free if there exists {Ui}, an open
cover of X such that F |Ui ∼=

⊕
OUi for all i.

Proposition 6.20. If F and G are locally free OX-modules, then F ⊕ G is a locally free
OX-module.

Definition 6.21. The rank of a locally free module F is defined pointwise: rankx(F ) =
rank(F |U ) as a free OU -module, where U a neighborhood of X in which F |U is free.

Remark 6.22. x 7→ rankx(F ) is locally constant and thus rankx(F ) is continuous. If X is
connected then every locally free module has constant rank.

Definition 6.23. A vector bundle over a ringed space (X,OX) is a locally free OX -module
with rankx(F ) <∞ for all x ∈ X.

Notation 6.24. We write VB(X,OX) to denote the category of vector bundles on the
ringed space (X,OX).

Remark 6.25. By Propositions 6.17 and 6.19, VB(X,OX) is an additive Abelian category.

Definition 6.26. We can thus define the Grothendieck group K0(X,OX) to be the Abelian
group with one generator [F ] for each isomorphism class of vector bundles and the relation
[F ] + [G ] = [F ⊕ G ] for each pair of vector bundles F and G .

Proposition 6.27. There is a categorical equivalence between VB(X,Otop) and VB(X),
the category of topological vector bundles over X.

In example 5.2.1 of [Weib], Weibel gives a one-to-one correspondence between vector bundles
on (SpecR,O) and finitely generated projective R-modules. This correspondence is defined
as follows: For a projective R-module, P 7→ P̃ , as in our above construction. Given a vector
bundle F on SpecR, we have that F is locally free by definition. Then by the patching
described in 2.5 of [Weib], we construct a projective R-module.

Definition 6.28. An OX -module F is quasi-coherent if there is {Ui} an open cover of X,

Ui = SpecAi such that there exists an Ai-module Mi with F |Ui ∼= M̃i for each i. F is
coherent if in addition, each Mi is finitely generated.

The correspondence given above shows that every vector bundle is quasi-coherent.

Proposition 6.29. Let X = SpecR. Then the functor M 7→ M̃ gives an equivalence of
categories between ModR and ModOXqcoh.

Corollary 6.30. Let X = SpecR. We have an equivalence of categories between VB(X)
and P(R).

Proof. This follows from the fact that there is a one-to-one correspondence between P(R)
and VB(X) which are subcategories of the equivalent categories ModR and ModOXqcoh.

We can thus conclude that for an affine scheme (X,OX) ∼= (SpecR,O), we have an isomor-
phism of Grothendieck groups K0(X,OX) ∼= K0R.
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7 K1 of a Ring (N. Castro)

Definition 7.1. The Whitehead group of a ring R, denoted K1R is given by

K1R := GL(R)/GL(R)′,

where GL(R) = lim
−→

GLn(R) and GL(R)′ is the commutator, or the first derived group of

GL(R).

Here, we will begin a discussion of K1C, the Whitehead group of a category C to give an
alternative definition for K1R.

7.1 The Loop Category

Definition 7.2. Let C be a category. The loop category of C, denoted Ω(C), is the category
with Ob Ω(C) = {(A,α) | A ∈ Ob C, α ∈ AutA}. A morphism f ∈ MorΩ(C)((A,α), (B, β))
is a morphism f ∈ MorC(A,B) such that

A B

A B

f

α β

f

commutes.

Definition 7.3. Let (C,⊥) be a category with product. A composition on C is a sometimes
defined binary operation ◦ : Ob C ×Ob C −→ Ob C such that if A ◦B and C ◦D are defined
then so is (A⊥C) ◦ (B⊥D) and

(A⊥C) ◦ (B⊥D) = (A ◦B)⊥(C ◦D).

Remark 7.4. If (C,⊥) is a category with product then (Ω(C),⊥) is a category with product,
defined by (A,α)⊥(B, β) = (A⊥B,α⊥β).

Definition 7.5. K1C = K0Ω(C). That is, K1C is an Abelian group with generators [A,α],
A ∈ Ob(C) and α ∈ Aut(C) and with relations
(1). [A,α] = [B, β] if there is an isomorphism f ∈ MorΩ(C)((A,α), (B, β)).
(2). [A,α] + [B, β] = [A⊥B,α⊥β].
(3). [A,α] + [A,α′] = [A,αα′].

Definition 7.6. A subcategory D of C is full if MorD(A,B) = MorC(A,B) for every A,
B ∈ Ob(D).

Definition 7.7. A subcategory D of (C,⊥) is cofinal if for every A ∈ Ob C there is an
A′ ∈ Ob C and a B ∈ ObD such that A⊥A′ = B.

14



Example 7.8. Let R be a ring and let P(R) denote the category of finitely generated pro-
jective modules over R. Then the subcategory F(R) consisting of free R-modules of finite
rank is a full cofinal subcategory of P(R).

Proposition 7.9. Let (C,⊥) be a category with product and C′ a full cofinal subcategory.
Then the inclusion i : C′ −→ C induces an isomorphism

K1i : K1C′ −→ K1C.

Definition 7.10. Let R be a ring. K1R = K1P(R).

Proposition 7.11. For any ring R, K1R ∼= GL(R)ab = GL(R)/GL(R)′, for K1R as
defined above.

Proof. As previously stated, GL(R) = lim
−→

GLn(R). For each n, we have the homomorphism

in : GLn(R) −→ GLn+1(R)

via

M 7→
[
M 0
0 1

]
.

There is a map GLn(R) −→ K1R given by M 7→ [Rn,M ] such that

GLn(R) GLm(R)

K1R

in,m

commutes, where in,m = im−1im−2 · · · in (n < m). Commutativity of the diagram is clear
since [Rn,M ] = [Rm,M ⊕ Im−n]. The universal property of the direct limit gives us a map
GL(R) −→ K1(R), which induces a map ϕ : GL(R)ab −→ K1R.

Claim 7.12. ϕ is an isomorphism.

By the previous proposition, K1R = K1P(R), and thus every element is of the form [Rn,M ].
We can view M ∈ GL(R) as M ∈ GLn(R) for some n. So, ϕ maps M ∈ GL(R)ab to [Rn,M ]
and thus ϕ is surjective.

To prove injectivity, we need additional notation.

Notation 7.13. Let Bij(x) ∈ GLn(R) be the elementary matrix which differs from In only
in the ijth entry, where its entry is x ∈ R. The subgroup of GLn(R) generated by all such
matrices is called the elementary linear group which we will denote En(R).
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If i 6= j then
Bij(x) = Bik(x)Bkj(1)Bik(x)−1Bkj(1)−1,

i.e., every element of En(R) can be written as a product of commutators. Now let A =
(aij) ∈Mn(R). Working in GL2n(R) we have[

I A
0 I

]
=

n∏
i=1

n∏
j=1

Bij+n(aij),

and thus, [
I A
0 I

]
,

[
I 0
A I

]
∈ E2n(R).

Let M ∈ GLn(R). Then M ⊕M−1 ∈ GL2n(R), and[
I 0

M−1 − I I

] [
I I
0 I

] [
I 0

M − I I

] [
I −M−1

0 I

]
= M ⊕M−1.

Thus, M ⊕M−1 ∈ E2n(R). Passing to GL(R), M ⊕M−1 can be written as a product of
commutators and so has trivial image in GL(R)ab.

Proposition 7.14. Let (C,⊥, ◦) be a category with product and composition and let A,
B ∈ Ob C. Then [A] = [B] in K1(C) if and only if there exist C,D,E,D′, E′ ∈ Ob C with

A⊥C⊥(D ◦ E)⊥D′⊥E′ = B⊥C⊥D⊥E⊥(D′ ◦ E′).

Let A ∈ GLn(R) such that [Rn, A] = 0 in K1R. Working in Ω(F(R)), the above proposition
provides B ∈ GLs(R), C1, C2 ∈ GLt(R), and D1, D2 ∈ GLu(R) such that

(Rm, A⊕B ⊕ C1C2 ⊕D1 ⊕D2) ∼= (Rr, B ⊕ C1 ⊕ C2 ⊕D1D2),

where m = n+ s+ t+ 2u and r = s+ 2t+ u. In Ω(F(R)),

(Rm, Im) ∼= (Rr, Ir).

Thus,

(Rm+r, A⊕B ⊕ C1C2 ⊕D1 ⊕D2 ⊕ Ir) ∼= (Rm+r, B ⊕ C1 ⊕ C2 ⊕D1D2 ⊕ Im).

Also note that

(Rm+r, In⊕B−1⊕(C1C2)−1⊕D−1
1 ⊕D

−1
2 ⊕Ir) ∼= (Rm+r, B−1⊕(C1C2)−1⊕D−1

1 ⊕D
−1
2 ⊕Im).

Composing the above isomorphisms yields

(Rm+r, A⊕ Is ⊕ It ⊕ I2u ⊕ Ir) ∼= (Rm+r, Is ⊕ C1 ⊕ C−1
1 ⊕D1 ⊕D−1

1 ⊕ Im−n).

Thus, A has trivial image in GL(R)ab and so ϕ is injective.

Lemma 7.15. (Whitehead’s Lemma) For any ring R, GL(R)′ ∼= E(R).

Thus, we have K1R ∼= GL(R)/E(R).

Example 7.16. Let F be a field. Then E(F ) = SL(F ). Consider the homomorphism

det : GL(F ) −→ F×.

Notice that ker(det) = SL(F ) and so F× ∼= GL(F )/SL(F ) ∼= K1F .
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