Exceptional collections on arithmetic toric varieties
(joint with Matthew Ballard and Alexander Duncan)

Patrick K. McFaddin

University of South Carolina

K-theory ICM Satellite Conference Workshop
Let k be a field and \bar{k} its algebraic closure.

Definition

A k-torus is an algebraic group T over k such that

$T_{\bar{k}} := T \times_{\text{Spec}(k)} \text{Spec}(\bar{k}) \cong (\bar{k}^\times)^n$.

Examples

- the split torus $\mathbb{G}_m^n = (k^\times)^n$
- the circle group $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$; note that $S^1_{\mathbb{C}} \cong \mathbb{C}^\times$.
- the Weil restriction $R_{\mathbb{C}/\mathbb{R}}(\mathbb{C}^\times)$ (this is \mathbb{C}^\times viewed as a real variety); note that $R_{\mathbb{C}/\mathbb{R}}(\mathbb{C}^\times)_{\mathbb{C}} \cong (\mathbb{C}^\times)^2$.
An arithmetic toric variety is a (smooth, projective) normal variety together with a faithful action of a torus which has a dense open orbit. A toric variety with torus T is split if T is a split torus.

Example: split toric varieties

- (products of) projective space: $\mathbb{G}_m^n \subset \mathbb{A}^n \subset \mathbb{P}^n$
- if $T = \mathbb{G}_m^n$, then $X = X(\Sigma)$ for $\Sigma \subset \mathbb{Z}^n = \text{Hom}(\mathbb{G}_m, T)$
Non-split arithmetic toric varieties

Example
- the real conic \(\{(x : y : z) \in \mathbb{P}^2_{\mathbb{R}} \mid x^2 + y^2 + z^2 = 0\} = SB(\mathbb{H}) \)
- toric variety with torus \(S^1 \)
- over \(\mathbb{C} \), this is \(\mathbb{P}^1 \) with torus \(\mathbb{C}^\times \)

Example
- real projective space \(\mathbb{P}^1_{\mathbb{R}} \)
- toric variety for two distinct tori: \(\mathbb{R}^\times \) and \(S^1 \)

Example
- the Weil restriction \(R_{\mathbb{C}/\mathbb{R}}(\mathbb{P}^1_{\mathbb{C}}) \)
- toric variety with torus \(R_{\mathbb{C}/\mathbb{R}}(\mathbb{C}^\times) \)
- over \(\mathbb{C} \), this is \(\mathbb{P}^1 \times \mathbb{P}^1 \) with torus \((\mathbb{C}^\times)^2 \)
For a k-scheme X, let $D^b(X) = D^b(coh(X))$ denote the bounded derived category of coherent sheaves on X.

Definition

An object E in $D^b(X)$ is **exceptional** if

- $\text{Ext}^n(E, E) = \text{Hom}(E, E[n]) = 0$ for all $n \neq 0$, and
- $\text{End}(E)$ is a division k-algebra of finite dimension.

Definition

A sequence $E = \{E_1, \ldots, E_s\}$ of exceptional objects is an **exceptional collection** if $\text{Ext}^n(E_i, E_j) = 0$ for all n whenever $i > j$.

- E is **full** if it generates $D^b(X)$.
- E is **strong** if $\text{Ext}^n(E_i, E_j) = 0$ for all $n \neq 0$.
Exceptional collections

An exceptional collection \(\{E_1, \ldots, E_n\} \) on a scheme \(X \) induces an isomorphism on \(K \)-theory

\[
K_p(X) \cong \bigoplus_{i} K_p(D_i),
\]

where \(\text{End}(E_i) = D_i \).

Example

- (Beilinson) The set \(\{\mathcal{O}, \mathcal{O}(1), \ldots, \mathcal{O}(n)\} \) is a full strong exceptional collection of line bundles on \(\mathbb{P}^n \).
- \(\mathbb{P}^1 \times \mathbb{P}^1 \) has full strong exceptional collection given by \(\{\mathcal{O}, \mathcal{O}(1, 0), \mathcal{O}(0, 1), \mathcal{O}(1, 1)\} \), where \(\mathcal{O}(i, j) = \pi_1^* \mathcal{O}(i) \otimes \pi_2^* \mathcal{O}(j) \).

Theorem (Kawamata)

Every split toric variety has a full exceptional collection.
Examples in non-split case

Example: the real conic $X = \{ x^2 + y^2 + z^2 = 0 \} \subset \mathbb{P}^2_{\mathbb{R}}$

- $X_{\mathbb{C}} \cong \mathbb{P}^1$
- $X = \text{SB}(\mathbb{H})$, where \mathbb{H} denotes Hamilton’s quaternions.
- X has a full strong exceptional collection $\{ \mathcal{O}_X, \mathcal{F} \}$
- $\text{End}(\mathcal{F}) \cong \mathbb{H}$ and $\mathcal{F}_{\mathbb{C}} \cong \mathcal{O}_{\mathbb{P}^1}(1) \oplus \mathcal{O}_{\mathbb{P}^1}(1)$.

Example: Weil restriction $Y = R_{\mathbb{C}/\mathbb{R}}(\mathbb{P}^1_{\mathbb{C}})$

- $Y_{\mathbb{C}} \cong \mathbb{P}^1 \times \mathbb{P}^1$
- Y has a full strong exceptional collection $\{ \mathcal{O}_Y, \mathcal{G}, \mathcal{H} \}$
- $\text{End}(\mathcal{G}) \cong \mathbb{C}$ and $\mathcal{G}_{\mathbb{C}} \cong \mathcal{O}(1, 0) \oplus \mathcal{O}(0, 1)$
- $\text{End}(\mathcal{H}) \cong \mathbb{R}$ and $\mathcal{H}_{\mathbb{C}} \cong \mathcal{O}(1, 1)$
Descent of exceptional collections

Let X be a scheme with an action of a finite group G.

Definition

A set of objects E in $D^b(X)$ is **G-stable** if for all $A \in E$ and all $g \in G$ there exists $B \in E$ such that $g^* A \cong B$.

Theorem (Ballard, Duncan, M.)

Let X be a k-scheme and L/k a G-Galois extension. Then X_L admits a G-stable exceptional collection if and only if X admits an exceptional collection.

Moreover, if one collection is full/strong/of sheaves/of vector bundles, then so is the other.

Note that if E is a G-stable exceptional collection consisting of line bundles on X_L, the resulting collection on X may not consist of line bundles.
A question of Merkurjev and Panin

Definition

A \textit{G-lattice} \(M \) is a free \(\mathbb{Z} \)-module with an action of \(G \), i.e., a homomorphism \(G \to \text{GL}(M) \cong \text{GL}_n(\mathbb{Z}) \). A \(G \)-lattice is a \textit{permutation lattice} if it has a basis which is permuted by \(G \).

Theorem (Merkurjev, Panin ’97)

Let \(X \) be a toric variety with splitting field \(L/k \) and \(G = \text{Gal}(L/k) \). Then \(K_0(X_L) \) is a \(G \)-lattice which is a direct summand of a permutation lattice.

Question

Is \(K_0(X_L) \) a permutation lattice?

Notice that the existence of a full exceptional collection on \(X \) provides an affirmative answer.
Main results

Theorem

The following possess full exceptional collections of sheaves:

- Severi-Brauer varieties (Bernardara ’09)
- dP_6 (Blunk, Sierra, Smith ’11)
- toric surfaces (Xie, BDM ’17)
- toric Fano 3-folds (BDM)
- all forms of 43 of the 124 split toric Fano 4-folds (BDM)
- all forms of centrally symmetric toric Fano varieties (BDM; Castravet, Tevelev)
- all forms in characteristic zero of toric varieties corresponding to Weyl fans of root systems of type A (BDM; Castravet, Tevelev)
Remarks on methodology

X a toric variety, X_L split with fan Σ

- assume X_L admits an exceptional collection of line bundles
- $G = \text{Gal}(L/k)$ acts on X_L so preserves Σ, and thus preserves $\Sigma(1)$
- $\Sigma(1) \leftrightarrow \text{Div}_{T_L}(X_L)$
- this induces an action of G on $\text{Pic}(X_L)$ which is completely determined by the action on Σ

Thus, to check G-stability, suffices to check $\text{Aut}(\Sigma)$-stability.

- methods of Bondal and Uehara give stable collections for the 3-fold and 4-fold cases using the toric Frobenius
- the centrally symmetric results use an exceptional collection independently discovered by Castravet and Tevelev.
- the root system result builds on work of Castravet and Tevelev on equivariant derived categories.
¡Muchas gracias!