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Introduction

Definition 0.1. A K3 surface is a smooth two-dimensional algebraic variety which is simply
connected and has trivial canonical class.

We begin unraveling this definition by defining smoothness for a variety and continue
with a discussion of divisors and differentials. We will then give a few examples of K3
surfaces as well as a dimension count of various hypersurfaces in the moduli space of K3’s.

1 Divisors and the Canonical Class

Throughout this talk, we will use the term surface to mean a smooth variety of dimension
two over a fixed algebraically closed field k.

Definition 1.1. Let Y ⊂ An be an affine variety of dimension r. Then Y is nonsingular
or smooth at P ∈ Y if the rank of [(∂fi/∂xj)(P )] is n− r.

1.0.1 Examples

• Y = {y2 − x(x2 − 1) = 0} ⊂ A2. Then the matrix of partial derivatives is[
−3x2 + 1 2y

]
which has rank 1 for every value of x, y. Thus, Y is smooth.

• Y = {z2 − x2 − y2 = 0} ⊂ A3. Then the matrix of partials is[
−2x −2y 2z

]
We notice that at (0, 0, 0) this matrix has rank < 3− 2 = 1 and so Y is not smooth.

We can still use this definition for projective varieties by looking at the affine patch
on which the point in question lies. While it seems that this definition depends on the
embedding of our varieties in projective or affine space, smoothness is actually an intrinsic
property which can be characterized by considering its local rings.
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Definition 1.2. LetX be a variety. A prime divisor onX is an irreducible closed subvariety
of codimension one. A Weil divisor on X is a formal integral linear combination

∑
niDi of

prime divisors. We denote by Div(X) the free abelian group generated by prime divisors.

On a surface, the prime divisors are just smooth curves so that an arbitrary Weil divisor
is of the form

∑
niCi with ni ∈ Z and Ci a smooth curve. Using the theory of valuation

rings, we can define the divisor of a function as the set of zeros minus the set of poles (along
with multiplicity). Thus, for a rational function ϕ we define the divisor of ϕ,

(ϕ) =
∑

niZi −
∑

miPi

where Zi is a curve for which ϕ = 0, ϕ has poles along Pi and ni,mi are the orders of such
zeros and poles. This leads us to the notion of linear equivalence.

Definition 1.3. Let D and D′ be two divisors on a surface X. Then D is linearly equivalent
to D′ (written D ∼ D′) if D − D′ is principal. That is, if it is equal to the divisor of a
function. We define ClX = DivX/ ∼.

In order to talk about the canonical class of a surface, we must make some remarks
about invertible sheaves. One can think of a sheaf as a collection of functions defined over
a topological space. To each open set on our surface, we associate a collection of ”nice”
functions on U . We also want these functions to have the property that they will glue nicely
on overlaps. For example, we may consider continuous functions, differentiable functions,
C∞ differential forms, polynomials, etc.

1.0.2 Examples

• For any topological space X, we can define the sheaf of continuous functions from X to
R. Over each open set, we associate the ring C(U) of continuous functions on U . If we have
continuous functions f on U and g on V which agree on U ∩ V , we can glue f and g to be
a function on U ∪ V .

• We may similarly define the sheaf of analytic functions on a complex manifold M . To
each open set U ⊂M we associate the ring H(U) of analytic functions on U . We can then
define the sheaf of analytic differential forms. To each open set U we set D(U) to be the
module of analytic differential forms. Notice that for each open set U , D(U) is a module of
H(U) since multiplying an analytic differential form by an analytic function yields a differ-
ential form. This example illustrates the idea that sheaves of rings and sheaves of modules
generalize the notions of modules over rings.

We can define certain nice sheaves which are called invertible sheaves. An invertible
sheaf is a sheaf of modules which locally looks like a free module of rank 1. Given a surface
X, the set of all invertible sheaves (up to isomorphism) on X forms a group, with the
group law being given by tensor product. This group is called the Picard group of X and
is denoted PicX. It turns out that invertible sheaves and divisors are intimately related,
as the following theorem asserts.
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Theorem 1.4. Let X be a nonsingular variety. There is a one-to-one correspondence
between invertible sheaves on X modulo isomorphism and Weil divisors on X modulo linear
equivalence. That is, PicX ∼= ClX as groups.

Given a divisor D on a surface X, the associated invertible sheaf is denoted OX(D).
There is a special invertible sheaf on any variety called the canonical sheaf or canonical
bundle, and is denoted by ωX :=

∧2 Ω1
X . This is the sheaf which associates to each open

set U , the regular differential forms on U . That is, ωX(U) = {fdx1 ∧ dx2|f is regular onU}.

Definition 1.5. The canonical class KX of X is the divisor corresponding to the canonical
sheaf ωX =

∧2 Ω1
X . That is, ωX = OX(KX).

We now state a result which allows us to compute the canonical class of a surface
embedded in projective space. In the examples given below, we will use this result as well
as some arithmetic of divisors to determine when certain spaces have KX = 0, showing that
they are K3 surfaces.

Theorem 1.6. (Adjunction Formula) Let X be a variety and let S ⊂ X be a codimension
one subvariety. If KX is the canonical divisor on X then

KS
∼= (KX + S)|S

2 Examples of K3 Surfaces

We will begin with intersections of hypersurfaces in projective space. We would like to
determine the degrees of these hypersurfaces which will give a trivial canonical class on the
their intersection. This will allow us to conclude that these surfaces are in fact K3’s. We
will repeatedly use the following fact which will not be proven.

Fact: KPn = −(n+ 1)H where H ⊂ Pn is a hyperplane.

• Let Sd ⊂ P3 be a hypersurface of degree d. Then by the adjunction formula, we have

KSd
= (KP3 + Sd)|Sd

where we consider Sd as a prime divisor of P3. Thus,

KSd
= (−4 + d)H|Sd

,

so that KSd
= 0 when d = 4. Thus, a degree 4 hypersurface in P3 is a K3 surface since it

has trivial canonical class.

• Let X := Sd1 ∩ Sd2 ⊂ P4 be the complete intersection of two hypersurfaces of degree d1
and d2. We may assume that di > 1, for otherwise Sd1 ∩ Sd2 ∼= P3 ∩ Sd2 is just a degree d2
surface in P3, which is the case above. Again, using the adjunction formula, we have

KX = (KP4 +X)|X .
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Thus, we have
KX = (−5 + d1 + d2)H|X

so that KX = 0 when d1 = 2 and d2 = 3. Hence, X is the intersection of a cubic and a
quadric.

• Let X := Sd1 ∩Sd2 ∩Sd3 be the complete intersection of three hypersurfaces of degree d1,
d2 and d3 respectively. Adjunction gives

KX = (−6 + d1 + d2 + d3)H|X .

Thus, KX = 0 when d1 = d2 = d3 = 2 so that X is an intersection of 3 quadrics.

• Let π : X → P2 be a 2:1 cover of P2 ramified at {f = 0}. There is a formula

KX = π∗(KP2 +
1

2
R)

where R is the ramification divisor in P2. We know that KP2 = −3H where H is a hyper-
plane. Thus KP2 + 1

2R = 0 when R ∼ 6H so that KX = 0 when R = 6H. Hence, f has
degree 6 so is a sextic curve in P2. Thus, a surface which is a 2:1 cover of P2 ramified at a
sextic is a K3 surface.

3 Polarization and the Moduli of K3 Surfaces

In describing the moduli space of K3 surfaces, we would like a second parameter to aid in
our description. We consider polarized K3 surfaces, where a polarization L on a surface S
is an ample invertible sheaf (or ample divisor) on S. In our first three examples, this ample
invertible sheaf will just be OP3(1), OP4(1), and OP5(1) restricted to our respective surfaces.
These are simply the sheaves corresponding to the divisors 1 ·H where H is a hyperplane
in P3, P4 or P5. We may use L along with an intersection pairing to compute the degree of
our K3 surfaces.

• Let X ⊂ P3 be a degree 4 hypersurface. Then take L = OP3(1)|X = H|X . Thus,
L2 = H.H.X = H.H.4H = 4.

• Let X ⊂ P4 be the intersection of a quadric and a cubic. Then again take L = OP4(1)|X .
Then we have L2 = H.H.2H.3H = 6.

• Let X ⊂ P5 be the intersection of 3 quadrics. Taking L = OP5(1)|X we have L2 =
H.H.2H.2H.2H = 8.
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Dimension Count

• Let X be a hyperplane of degree 4 in P3. Then f is a degree 4 homogeneous polynomial
in 4 variables. In general, there are

(
d+n
d

)
degree d monomials in n+ 1 variables. Of course,

multiplying our polynomials by a nonzero scalar will not changing our surface in projective
space, so we have

(
d+n
d

)
− 1 monomials. Thus, in this case we have

(
7
4

)
− 1 = 34. We also

notice that PGL(4) acts on P3. If A ∈ PGL(4) acts on P3, we will obtain a surface in P3

isomorphic to our original surface. Thus, we must subtract dim PGL(4) = 42− 1 = 15 from
our total count. Thus, there are 34 - 15 = 19 parameters on which our K3 surfaces of degree
4 in P3 depend, so the dimension of the moduli space of polarized K3 surfaces of degree 4
in P3 is 19.

• Let X be the intersection of a cubic f3 = 0 and a quadric f2 = 0 in P4. For f3, we
have

(
3+4
3

)
− 1 = 34 monomials and

(
2+4
2

)
− 1 = 14 for f2. Consider the homogeneous

ideal 〈f3, f2〉. Any f ∈ 〈f3, f2〉 will have the form f3 + lf2 for some line l. This l will
eliminate 5 degrees of freedom (one for each choice of a degree one monomial). Finally,
dim PGL(5) = 52− 1 = 24, so our final count on the dimension of the moduli space of K3’s
of this type is 34 + (14− 5)− 24 = 19.

• Let X be the intersection of 3 quadrics in P5. For each quadric, there are
(
2+5
2

)
− 1 =

20 ways of defining it. Now, let us consider the homogeneous ideal 〈f, g, h〉 defining the
intersection of our 3 quadrics. Notice that for any scalars α1, ..., α6 ∈ k, we have

〈f + α1g + α2h, α3f + g + α4h, α5f + α6g + h〉 = 〈f, g, h〉.

The αi are six choices which we can change and not change the surface. In order to not
double count, we must subtract these 6 choices from our total count. Finally, we have
dim PGL(6) = 62 − 1 = 35. Thus, the dimension of the moduli space of K3 surfaces of this
type is 20 + 20 + 20− 6− 35 = 19.

• Let X be a 2:1 cover of P2 ramified at a sextic f6 = 0. There are
(
6+2
2

)
− 1 = 27 possible

monomials which can define f6. We also have dim PGL(3) = 32 − 1 = 8. Thus, there are
27 - 8 = 19 different sextics at which X → P3 may be ramified, and we conclude that the
dimension of the moduli space of such K3’s is 19.
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