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Given a scheme X, there are two important techniques one may use to study X. On
one hand, there is the theory which utilizes subschemes or divisors and algebraic cycles and
its corresponding cohomology theory is represented by the Chow ring A(X). On the other
hand, there is the method of studying bundles over X, utilizing vector bundles and coherent
and quasicoherent sheaves, and its corresponding cohomology theory is K-theory. This is
analogous to the methods used in differential geometry relating submanifolds and vector
bundles.

Our main goal will be to completely characterize the Grothendieck group of a nonsingular
algebraic curve in terms of its Picard group. We begin with a few definitions.

Definition 1.1. Let X be a noetherian scheme and let C be the category of coherent
sheaves on X. Let Z[C] be the free abelian group generated by isomorphism classes [F ]
where F ∈ ob C. For each exact sequence

0→ F1 → F2 → F3 → 0

of coherent sheaves, form the element [F2]−[F1]−[F3] and let J be the subgroup generated
by such elements. Define

K·(X) = Z[C]/J .

Remark 1.2. The group K·(X) defined above is often denoted G0(X). One may similarly
define K0(X) or K ·(X) using locally free sheaves: Let L be the category of locally free
sheaves on X, and let J ′ be the subgroup of Z[L] generated by elements of the form
[F2]− [F1]− [F3] as above. Define

K0(X) = K ·(X) = Z[C]/J ′.

In certain cases, these groups are all isomorphic, as we will see shortly. We first need some
preliminary results.

Lemma 1.3. Let X be a noetherian, integral, separated, regular scheme, such as a nonsin-
gular curve. Then any coherent sheaf F on X has a finite locally free resolution.

We will prove this lemma assuming a few important facts:

1



Fact 1: (HAG Ex. III.6.8) Let X be a noetherian scheme. Then Coh(X), the category of
coherent sheaves on X, has enough locally frees. That is, every coherent sheaf on X is a
quotient of a locally free sheaf. Thus, every coherent sheaf admits a locally free resolution

E· → F

Fact 2: (HAG Prop. III.6.11 A) Let A be a regular local ring and M an A-module. Then

pdimM ≤ dimA

where pdimM is the minimum length of a projective resolution of M .
Fact 3: (HAG Ex. III.6.5 C) For a coherent sheaf F on X,

hdim F = sup
x∈X

pdimOX
Fx

where hdim F is the minimum length of a locally free resolution of F .

Proof. (Lemma 1.3) Let F be a coherent sheaf on X and let x ∈ X. By Fact 1, F admits
a locally free resolution, so hdim F exists. Since X is regular, OX,x is a regular local ring
and thus by Fact 2 we have

pdim Fx ≤ dimOX,x.
Since x was arbitrary, using Fact 3 we have

hdim F = sup
x∈X

pdim Fx ≤ dimOX,x <∞.

Thus, F admits a finite locally free resolution.

Theorem 1.4. If X is a noetherian, integral, separated, regular scheme, then the natural
map

i : K ·(X)→ K·(X)

or
i : K0(X)→ G0(X)

is an isomorphism.

Proof. Let [F ] ∈ K·(X). By Lemma 1.3, F has a finite resolution by locally free sheaves

0→ En → · · · → E0 → F → 0.

Then

[F ] =

n∑
i=0

(−1)n[Ei]

in K·(X). Thus we can take
∑n

i=0(−1)n[Ei] as a preimage for [F ].
To see injectivity, we define a candidate for the inverse of i. Let F be a coherent sheaf and
let E· → F be its finite locally free resolution. Define j([F ]) =

∑
(−1)i[Ei]. One checks

that j is independent of the choice of resolution of F (we will check this below), so that j
is a well-defined group homomorphism. From the definitions of i and j we have j ◦ i = id
so that i is injective. Thus, i is an isomorphism.
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Remark 1.5. In this case, we useK0(X) to denote the common value ofK ·(X),K·(X), G0(X)
and K0(X). If C is a nonsingular curve, then of course C is noetherian, integral, separated
and regular. Thus,

K0(C) = K ·(C) ∼= K·(C) = G0(C).

One may have first encountered the K-theory of a ring. That is, K0(A) is the group
completion of the commutative monoid of isomorphism classes of finitely generated projec-
tive modules over A under direct sum. Our definition coincides with this one, so that we
may think of the K-theory of schemes as a generalization of the K-theory of rings.

Proposition 1.6. Let A be a noetherian ring and let X = SpecA. Then we have a group
isomorphism K0(A) ∼= K0(X).

Proof. By HAG Corollary 5.5, we have an equivalence of categories between the category
of finitely generated A-modules and the category of coherent OX -modules. Furthermore,
if P is a projective A-module, then P̃ is locally free. If F is locally free, it can be made
trivial on open sets of the form Ui = D(si) so that F |Ui

∼= M̃i for free modules Mi. The
isomorphisms on the overlaps give open patching data defining a projective A-module P
(see Weibel I.2.5 for details).

Example 1.7. K0(A1). Let F be a coherent sheaf on X. Then F is locally M̃ for some
finitely generated k[x]-module M . Giving M a presentation by generators and relations, we
have

k[t]⊕n → k[t]⊕m →M → 0.

We can also assume the first homomorphism is injective. For if there were nontrivial kernel,
since k[t] is an integral PID, any submodule of k[t]⊕n is free. Thus, we can reduce n
appropriately. We then have an exact sequence

0→ k[t]⊕n → k[t]⊕m →M → 0.

Applying (̃−), which is exact by HAG Proposition 5.4A, we obtain the short exact sequence

0→ O⊕nX → O⊕mX → F → 0

and thus [F ] = (m− n)[OX ] in K0(X). Since F was arbitrary, it follows that the map

ϕ : Z→ K0(X)

given by n 7→ n[OX ] is surjective.
We will now define the rank function rank : K0(X)→ Z by

rank(F ) = dimK Fη

where η is the generic point of X and K = Oη is the function field of X. We want to
see that rank is a well-defined homomorphism: Given a short exact sequence of coherent
sheaves

0→ F ′ → F → F ′′ → 0,
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and passing to the stalks at the generic point, we obtain a short exact sequence of finite
dimensional K-vector spaces

0→ F ′η → Fη → F ′′η → 0.

Thus, rank F = rank F ′ + rank F ′′, so rank is a well-defined homomorphism. To see that
it is surjective, notice that rankOX = 1 so that for any n ∈ Z, we have rankO⊕nX = n.
Thus, our above homomorphism ϕ splits and so K0(A1) ∼= Z.

Alternatively, using our proposition above, we can compute K0(X) much more easily. Since
A1 is affine, with affine coordinate ring k[t], we have

K0(X) ∼= K0(k[t]).

Since k[t] is a PID, any projective k[t]-module must be free and thus we have an isomorphism
K0(k[t]) ∼= Z given by k[t]⊕n 7→ n.

We have now seen that for a nonsingular curve, the information given to us by locally
free sheaves and is the same as that given to us by coherent sheaves (in fact, this is true
for any noetherian regular scheme with an ample line bundle). We can do even better. For
a nonsingular curve, the information obtained from coherent sheaves can be just as well
obtained from invertible sheaves.

Proposition 1.8. Let C be a nonsingular curve. If F is any coherent sheaf of rank r on
C, there is a divisor D on X and an exact sequence

0→ OC(D)→ F → T → 0,

where T is a torsion sheaf.

Proof. Let F be a coherent sheaf of rank r and let L be an ample invertible sheaf on C
(such a sheaf exists since C is necessarily projective). Then there exists n > 0 such that
F ⊗L ⊗n is generated by global sections. Let s1, ..., sm generate F ⊗L ⊗n. This gives a
surjective map

O⊕mC � F ⊗L ⊗n.

Let η be the generic point of X. We then have a map of K(C)-vector spaces

(OC,η)⊕m � Fη,

which gives
K(C)m � Fη.

Thus, there is an r > 0 such that K(C)r ∼= Fη. Thus, O⊕rC is generically isomorphic to
F ⊗L ⊗n. That is, there is a dense open U ⊂ C such that

O⊕rU ∼=ϕ F ⊗L ⊗n|U .
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Thus, kerϕ is a skyscraper sheaf at the finitely many points of C \ U . We have an exact
sequence

0→ kerϕ→ O⊕rC → F ⊗L ⊗n → cokerϕ→ 0.

Let p ∈ C \ U . Passing to the stalks, we have

0→ (kerϕ)p → (O⊕rC )p → (F ⊗L ⊗n)p → · · ·

Now, (kerϕ)p is a submodule of a free module (so torsion free) over OX,p, a PID and is thus
a free module. But kerϕ is a skyscraper at p and so we must have kerϕ = 0. Thus, our
exact sequence becomes

0→ O⊕rC → F ⊗L ⊗n → cokerϕ→ 0.

Since L ⊗n is a line bundle, so is its inverse, which is thus isomorphic to OC(D) for some
divisor D. Tensoring the above exact sequence with this OC(D) we obtain

0→ (OC(D))⊕r → F → T → 0,

where T is coker((OC(D))⊕r → F ). We want to see that T is torsion. Consider the
induced short exact sequence on the stalks at the generic point η:

0→ (OC(D))⊕rη → Fη → Tη → 0

This is a short exact sequence of finite dimensional K(C)-vector spaces. Notice that
dimK(X)(OC(D))⊕rη = dimK(X) Fη. Thus Tη = 0 so T is torsion.

We now come to our final result which makes our above discussion even more precise.

Proposition 1.9. Let C be a nonsingular curve. Then

K0(C) ∼= Pic(C)⊕ Z.

Proof. We begin by defining the following maps:
Determinant: By our discussion above, any coherent sheaf F on C has a finite locally free
resolution of length at most 1. That is, there exist locally free sheaves E0,E1 such that we
have a short exact sequence

0→ E1 → E0 → F → 0.

Let ri = rank Ei and define det F = (
∧r0 E0) ⊗ (

∧r1 E1)
−1 ∈ Pic(C). One checks that this

gives a homomorphism
det : K0(C)→ Pic(C).

We have an isomorphism Cl(C) ∼= Pic(C). Thus, for any element L ∈ Pic(C), we consider
its corresponding divisor D =

∑
nipi. Define ψ(D) =

∑
ni[k(pi)] ∈ K0(C) where k(pi) is

the skyscraper k at the point pi. One checks that ψ defines a group homomorphism

ψ : Pic(C)→ K0(C).
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Using these two maps as well the rank map and its splitting ϕ defined above, we have the
following diagram:

Pic(C) K0(C) Z

One then checks that this gives us a split exact sequence

0→ Pic(C)→ K0(C)→ Z→ 0,

hence
K0(C) ∼= Pic(C)⊕ Z.
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