
MOTIVES: WEEK 3 (CATEGORY OF
CORRESPONDENCES)

KELLER VANDEBOGERT

Prerequisites/Reminders

All objects considered will be objects in the category of smooth pro-

jective varieties over a field k, denoted Smproj(k). Recall first that a

cycle is a formal linear combination of irreducible subvarieties; we use

the notation Zi(X) for X a smooth projective variety to denote the

codimension i cycles; that is, a formal linear combination of irreducible

codimension i subvarieties. Note that

Z(X) =
⊕
i

Zi(X)

For an adequate equivalence relation ∼, recall that the set of all cy-

cles Z ∈ Zi(X) with Z ∼ 0 forms a subgroup denoted Zi
∼(X). Define:

Ci
∼(X) := Zi(X)/Zi

∼(X)

So that

C∼(X) =
⊕
i

Ci
∼(X)

If ∼ is to mean rational equivalence, we will use the notation CH(X)

for C∼(X) (CH is for Chow, and this is typically called the Chow

Ring). We will always denote by 1X the identity element of C∼(X);

moreover, we will often suppress the adequate equivalence relation and

write C(X) when no confusion will occur.
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Definition 0.1. Let f : X → Y be a morphism of k-varieties with

Z ⊂ X an irreducible subvariety. Define

deg(Z/f(Z)) :=

{
[k(Z) : k(f(Z))] if dim f(Z) = dimZ

0 if dim f(Z) < dimZ

Then,

f∗(Z) := deg(Z/f(Z))f(Z)

Remark 0.2. The above definition of degree in a sense counts the num-

ber of preimages or ”sheets” sitting above the image f(Z).

Before moving onto an example of a pushforward, the following result

will be a sort of black box result for us:

Lemma 0.3.

CH(Pn1 × · · · × Pnk) ∼= Q[X1, . . . , Xk]/(X
n1+1
1 , . . . , Xnk+1

k )

(by convention we will always use rational coefficients)

The above Lemma is particularly useful because the intersection

product in the Chow ring becomes literally multiplication of polynomi-

als under the above isomorphism. Note that the variable Xi is to denote

the class of a general hyperplane (that is, a codimension 1 irreducible

subvariety).

Example 0.4. The variable X in CH(P1) ∼= Q[X]/(X2) corresponds

to the class of a point in P1. The constant polynomial 1 corresponds

to all of P1.

Example 0.5. Let v : P1 → P3 denote the twisted cubic [x : y] 7→ [x3 :

x2y : xy2 : y3]. By the above lemma, the pushforward should induce a
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map

v∗ : Q[X]/(x2)→ Z[Y ]/(Y 4)

It suffices to look at the image of our generators 1 and X under this

map. As v is an embedding, we have that deg(Z/f(Z)) = 1 for any

class Z. Let us first consider v∗(X); as X corresponds to the class of

a point, the image will be a point in P3. In P3, the class of a point

corresponds to Y 3, so we know

v∗(X) = C · Y 3

where C is some constant to be determined. We can find C by consid-

ering the intersection number of any hyperplane in P3 with a point in

P3, which is easily seen to be 1. Thus we deduce v∗(X) = Y 3.

Now, we want to look at v∗(1). Again, 1 corresponds to all of P1;

recall that the image of the twisted cubic in P3 is a codimension 2

subvariety. By the same reasoning as as above, we deduce that

v∗(1) = C · Y 2

since Y 2 denotes the class of a codimension 2 subvariety. We again find

our constant C by considering the number of points of intersection of a

general codimension 2 subvariety with a hyperplane of P3. By Bëzout’s

Theorem, this number is 3. Extending by linearity, we see that

v∗(a+ bX) = 3aY 2 + bY 3

Example 0.6. Using the same process as above, we can look at the

more general map

P1 vd
// Pd

[x : y] � // [xd : xd−1y : · · · : yd]
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The pushforward induces a Q-linear morphism

v∗ : Q[X]/(X2)→ Q[Y ]/(Y d+1)

such that

v∗(a+ bX) = daY d−1 + bY d

Exercise 0.7. Try this for the general Veronese embedding vn,d : Pn →

PN , with N =
(
n+d
d

)
− 1, or at least try to show that(

vn,d
)
∗(X

n) = Y N ,
(
vn,d
)
∗(1) = dnY d−1

1. Correspondences

Definition 1.1. A correspondence from X to Y is any cycle of the

cartesian product X × Y . Since we will be interested mostly in corre-

spondence classes, we adopt the notation

Corr(X, Y ) := C∼(X × Y )

Example 1.2. Assume we are working modulo rational equivalence.

By the Lemma of the previous section,

Corr(Pn,Pm) ∼= Q[X, Y ]/(Xn+1, Y m+1)

Correspondences are given a rather suggestive notation which leads

us to believe that these are in some sense morphisms from X to Y ; this

is indeed the case. Our first definition toward this mode of thinking is

the following:

Definition 1.3. Given f ∈ Corr(X1, X2), g ∈ Corr(X2, X3), we define

the composition g ◦ f ∈ Corr(X1, X3) as

g ◦ f :=
(
π13
)
∗

(
π∗12(f) · π∗23(g)

)
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where

πij : X1 ×X2 ×X3 → Xi ×Xj

is the standard projection.

Example 1.4. Consider 3 copies of P1, which we will denote P1
X , P1

Y ,

and P1
Z . Then,

Corr(P1
X ,P1

Y ) ∼= Q[X, Y ]/(X2, Y 2), Corr(P1
Y ,P1

Z) ∼= Q[Y, Z]/(Y 2, Z2)

Under the above isomorphisms, we should be able to compute the com-

position Y ◦X. By definition,

Y ◦X =
(
π13
)
∗

(
π∗12(X) · π∗23(Y )

)
Let us first focus on the term π∗12(X); as a class in P1

X×P1
Y , X represents

a line through the P1
X-axis, in the direction of the P1

Y axis.

When we pull this back to P1
X × P1

Y × P1
Z , this acts like an inclusion

mapping X 7→ X. Note however that in P1
X×P1

Y ×P1
Z , X has gained an

extra degree of freedom in the P1
Z direction, so it is more like a plane.

Similarly, for π∗23(Y ), this pullback acts like an inclusion Y 7→ Y .

Again we have that Y has gained an extra degree of freedom in P1
X

direction, so it is a hyperplane in the product P1
X × P1

Y × P1
Z .

Using this, we are now looking at
(
π13
)
∗

(
XY

)
, where the inside is

simply the product of monomials. Note that XY represents the class

of a codimension 2 surface with a full degree of freedom along the P1
Z

direction; when we project this onto P1
X×P1

Z , we see that the class still

retains a full degree of freedom in the P1
Z direction, and has no degree

of freedom in the P1
X direction.

This is precisely the class of X in P1
X×P1

Z , so we deduce that Y ◦X =

X.
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Example 1.5. Consider 1 ◦ Y in the same setting as above. This

simply becomes (
π13
)
∗

(
Y
)

In P1
X×P1

Y×P1
Z , Y represented the class of a hyperplane with no degrees

of freedom along P1
Y . When we project this on P1

X×P1
Z , this covers the

entire space, whose class is represented by 1. Thus 1◦Y = 1. Note that

this tells us that 1 is not necessarily the ”identity correspondence”, as

one might expect.

Exercise 1.6. Consider

Corr(P1
X ,P1

Y ) ∼= Q[X, Y ]/(X2, Y 2), Corr(P1
Y ,P2

Z) ∼= Q[Y, Z]/(Y 2, Z3)

Show that Z2 ◦ Y = Z2 and Z2 ◦X = 0.

2. Constructing a Category

The goal now is to construct a new category, the category of corre-

spondences, where the morphisms are precisely the correspondences as

defined above. We first need to see that correspondences satisfy the

properties of morphisms; namely, associativity and the existence of an

identity. We will employ the following, which is sometimes taken as an

axiom or can be proved otherwise.

Proposition 2.1 (Projection formula). Given a morphism φ : X → Y ,

let Z ∈ C(X), Z ′ ∈ C(Y ), we have

φ∗(Z · φ∗(Z ′)) = φ∗(Z) · Z ′

Lemma 2.2. Let ∆X ∈ Corr(X,X) denote the class of the image of

the diagonal map δX : X → X × X. Then, for any f ∈ Corr(X, Y )



MOTIVES: WEEK 3 (CATEGORY OF CORRESPONDENCES) 7

and g ∈ Corr(Y,X), we have

∆X ◦ g = g, f ◦∆X = f

Proof. We compute:

f ◦∆X = (π13)∗)(π
∗
12(∆X) · π∗23(f))

= (π13)∗((∆X × 1Y ) · (1X × f))

= (π13)∗(δX × 1Y )∗
(
(1X × 1Y ) · (δX × 1Y )∗(1X × f)

)
Note that 1X × 1Y acts as an identity element, so the above becomes:

(π13)∗(δX × 1Y )∗
(
(δX × 1Y )∗(1X × f)

)
= (π13)∗(1X × f)

= f

The case for ∆X ◦ g is essentially identical. �

Next, we have:

Lemma 2.3. Composition of correspondences is associative.

Proof. For convenience of notation, denote fi,i+1 as the correspondence

class of Corr(Xi, Xi+1). The projections πij are denoted in the standard

way. We see:

f34 ◦ (f23 ◦ f12) = (π14)∗
(
π∗13(f23 ◦ f12) · π∗34(f34)

)
= (π14)∗

(
π∗13((π13)∗(π

∗
23(f23) · π∗12(f12)) · π∗34(f34)

)
= (π14)∗

((
[(π13)∗(π

∗
23(f23) · π∗12(f12)]× 1X4

)
· (1X1 × f34)

)
= (π14)∗(π13 × id)∗

(
[(f12 × 1X3) · (1X1 × f23)× 1X4 ]

· (π13 × idX4)
∗(1X1 × f34)

)
= (π14)∗

(
(f12 × 1X3 × 1X4) · (1X1 × f23 × 1X4) · (1X1 × 1X2 × f34)

)
Similarly, composing in the other order,

(f34 ◦ f23) ◦ f12 = (π14)∗
(
π∗12(f12) · π∗24(f34 ◦ f23)

)
= (π14)∗

(
(f12 × 1X3 × 1X4) · (1X1 × f23 × 1X4) · (1X1 × 1X2 × f34)

)
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Thus the last line of both of the above computations are equal, in which

case composition of correspondences is associative. �

Definition 2.4. Define the graph Γφ of a morphism φ : X → Y as the

composition

Γφ = (φ× idY ) ◦ δY : Y
δY
// Y × Y φ×idY

// X × Y

Define h(φ) := Γφ∗(1Y ); note that h(φ) ∈ Corr(X, Y ).

Observe that in the above definition, h(idX) = ∆X .

Definition 2.5. Define the category of correspondences Corr(k) to be

the category whose objects consist of the objects of Smproj(k) and

whose morphisms are precisely correspondences.

Theorem 2.6. The association

X 7→ X, φ 7→ h(φ)

is a contravariant functor on Smproj(k) to Corr(k)

Proof. We only need show that for φ : Z → Y , ψ : Y → X, that

h(ψ ◦ φ) = h(φ) ◦ h(ψ). Note that by definition,

Γψ◦φ = π13
(
(Γψ × idZ) ◦ Γφ

)
Whence

h(ψ ◦ φ) =
(
π13
)
∗
(
(Γψ × idZ)∗Γφ∗(1Z)

)
Similarly, by definition of composition of correspondences,

h(φ) ◦ c(ψ) = (π13)∗
(
(1X × Γφ∗(1Z)) · (Γψ∗(1Y )× 1Z)

)
In view of the above two expressions, our goal is to show that

(1X × Γφ∗(1Z)) · (Γψ∗(1Y )× 1Z) = (Γψ × idZ)∗Γφ∗(1Z)
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We compute:

(1X × Γφ∗(1Z)) · (Γψ∗(1Y )× 1Z) =
(
1X × Γφ∗(1Z)

)
·
(
Γψ × idZ

)
∗(1Y×Z)

=
(
Γψ × idZ

)
∗

((
Γψ × idZ

)∗(
1X × Γφ∗(1Z)

)
· 1Y×Z

)
=
(
Γψ × idZ

)
∗

((
Γψ × idZ

)∗
π∗23
(
Γφ∗(1Z)

))
Then, note that π23 ◦ (Γψ × idZ) = idY×Z . Thus, the above becomes

(
Γψ × idZ

)
∗

((
π23 ◦ (Γψ × idZ)

)∗(
Γφ∗(1Z)

))
=
(
Γψ × idZ

)
∗

(
Γφ∗(1Z)

)
Which shows exactly what we want. Thus, h(ψ ◦ φ) = h(φ) ◦ h(ψ) as

contended. �

The importance of the above gives that we have ”embedded” Smproj(k)

into Corr(k), which is in fact an additive category over Q. That is, all

morphisms in Corr(k) are Q-linear (or R-linear for any other ring) with

respect to all arguments. The sum of varieties in Corr(k) is simply

X ⊕ Y , and we can define the tensor product as well:

Definition 2.7. Define the tensor product of objects in Corr(k) as

X⊗Y := X×Y . We may also define the tensor product of morphisms

for f1 ∈ Corr(X1, Y1), f2 ∈ Corr(X2, Y2):

f1 ⊗ f2 := τ23∗
(
π∗12(f1) · π∗34(f2)

)
where τ23 : X1×Y1×X2×Y2 → X1×X2×Y1×Y2 is the transposition

switching the order of the middle two terms.

Proposition 2.8. For f1, g1 ∈ Corr(X1, Y1), f2, g2 ∈ Corr(X2, Y2),

we have:

(f1 ⊗ f2) ◦ (f1 ⊗ g2) = (f1 ◦ g1)⊗ (f2 ◦ g2)
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Lemma 2.9 (Lieberman’s Lemma). Let α ∈ Corr(X,X ′), β ∈ Corr(Y, Y ′),

and f ∈ Corr(X, Y ). Then,

(α× β)∗(f) = β ◦ f ◦T α


