MOTIVES: WEEK 3 (CATEGORY OF
CORRESPONDENCES)

KELLER VANDEBOGERT

PREREQUISITES/ REMINDERS

All objects considered will be objects in the category of smooth pro-
jective varieties over a field k, denoted Smproj(k). Recall first that a
cycle is a formal linear combination of irreducible subvarieties; we use
the notation Z*(X) for X a smooth projective variety to denote the
codimension 7 cycles; that is, a formal linear combination of irreducible

codimension 7 subvarieties. Note that
2(X) =P 2'x)

For an adequate equivalence relation ~, recall that the set of all cy-
cles Z € Z/(X) with Z ~ 0 forms a subgroup denoted Z’ (X). Define:
CL(X) = Z'(X)/ZL(X)

So that

C.(X) =P ix)
If ~ is to mean rational equivalence, we will use the notation CH(X)
for C(X) (CH is for Chow, and this is typically called the Chow
Ring). We will always denote by 1y the identity element of C(X);

moreover, we will often suppress the adequate equivalence relation and

write C'(X) when no confusion will occur.
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Definition 0.1. Let f : X — Y be a morphism of k-varieties with
Z C X an irreducible subvariety. Define

(K(Z) : k(f(2))] if dim f(Z) = dim Z

deg(Z/f(Z)) := {O if dim f(Z) < dim Z

Then,
f(2) = deg(Z/ f(2))(Z)

Remark 0.2. The above definition of degree in a sense counts the num-

ber of preimages or ”sheets” sitting above the image f(Z2).

Before moving onto an example of a pushforward, the following result

will be a sort of black box result for us:

Lemma 0.3.
CH(P™ x -+ x P™) 2 Q[X1, ..., Xg]/ (X, . Xt

(by convention we will always use rational coefficients)

The above Lemma is particularly useful because the intersection
product in the Chow ring becomes literally multiplication of polynomi-
als under the above isomorphism. Note that the variable X; is to denote
the class of a general hyperplane (that is, a codimension 1 irreducible

subvariety).

Example 0.4. The variable X in CH(P!) & Q[X]/(X?) corresponds
to the class of a point in P!. The constant polynomial 1 corresponds

to all of P!,

Example 0.5. Let v : P! — P? denote the twisted cubic [z : y] — [23

2%y : xy® : y3]. By the above lemma, the pushforward should induce a
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map
vt QIX]/(2%) = Z[Y]/ (YY)
It suffices to look at the image of our generators 1 and X under this
map. As v is an embedding, we have that deg(Z/f(Z)) = 1 for any
class Z. Let us first consider v,(X); as X corresponds to the class of
a point, the image will be a point in P3. In P2, the class of a point

corresponds to Y3, so we know
U* (X) — C . Y3

where C' is some constant to be determined. We can find C' by consid-
ering the intersection number of any hyperplane in P with a point in
P3, which is easily seen to be 1. Thus we deduce v,(X) = V3.

Now, we want to look at v,(1). Again, 1 corresponds to all of P!;
recall that the image of the twisted cubic in P? is a codimension 2

subvariety. By the same reasoning as as above, we deduce that
v,(1) =C-Y?

since Y2 denotes the class of a codimension 2 subvariety. We again find
our constant C' by considering the number of points of intersection of a
general codimension 2 subvariety with a hyperplane of P3. By Bézout’s

Theorem, this number is 3. Extending by linearity, we see that
v.(a+bX) = 3aY? + bY?

Example 0.6. Using the same process as above, we can look at the

more general map

P! Yd Ppd
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The pushforward induces a Q-linear morphism
v QIX]/(X?) = QIY]/(Y )

such that

v (a+bX) = daY ™ + by

Exercise 0.7. Try this for the general Veronese embedding v,, 4 : P —

PV, with N = (”Zd) — 1, or at least try to show that

(vn.a) (X7) =Y, (vna) (1) = A"V

1. CORRESPONDENCES

Definition 1.1. A correspondence from X to Y is any cycle of the
cartesian product X x Y. Since we will be interested mostly in corre-

spondence classes, we adopt the notation

Corr(X,Y) :=C.(X xY)

Example 1.2. Assume we are working modulo rational equivalence.

By the Lemma of the previous section,

Corr(P", P™) = QX, Y]/(X"",Y™H)

Correspondences are given a rather suggestive notation which leads
us to believe that these are in some sense morphisms from X to Y'; this
is indeed the case. Our first definition toward this mode of thinking is

the following:

Definition 1.3. Given f € Corr(X;, X3), g € Corr(Xs, X3), we define

the composition g o f € Corr(X;, X3) as

go f=(ms), (715(f) - m33(9))
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where
7TZ']'ZX1XX2><X3—>XZ'XX]'

is the standard projection.

Example 1.4. Consider 3 copies of P!, which we will denote P, P3,,

and PL. Then,
Corr(Py,Py) = Q[X,Y]/(X?Y?), Corr(Py,Py) 2 Q[Y, Z]/(Y?, Z?)

Under the above isomorphisms, we should be able to compute the com-

position Y o X. By definition,
YoX = (7Tl3>* (WTZ(X> : W;3(Y))

Let us first focus on the term 7}, (X); as a class in Py, xP},, X represents
a line through the P-axis, in the direction of the P} axis.

When we pull this back to PY x PL x P}, this acts like an inclusion
mapping X — X. Note however that in Py x P}, x PL, X has gained an
extra degree of freedom in the P} direction, so it is more like a plane.

Similarly, for m3,(Y"), this pullback acts like an inclusion Y — Y.
Again we have that Y has gained an extra degree of freedom in P
direction, so it is a hyperplane in the product P x P} x PJ.

Using this, we are now looking at (ng)*(XY), where the inside is
simply the product of monomials. Note that XY represents the class
of a codimension 2 surface with a full degree of freedom along the P,
direction; when we project this onto P x P, we see that the class still
retains a full degree of freedom in the P} direction, and has no degree
of freedom in the P4 direction.

This is precisely the class of X in PL xP}, so we deduce that Yo X =
X.
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Example 1.5. Consider 1 oY in the same setting as above. This

simply becomes

(ms), (Y)

In P, x P} xP},, Y represented the class of a hyperplane with no degrees
of freedom along Pi,. When we project this on PY x PL, this covers the
entire space, whose class is represented by 1. Thus 1oY = 1. Note that
this tells us that 1 is not necessarily the ”identity correspondence”, as

one might expect.
Exercise 1.6. Consider
Corr(Py,Py) = Q[X,Y]/(X?Y?), Corr(Py,P%) 2 Q[Y, Z]/(Y?, Z%)

Show that Z20Y = Z2 and Z%20 X = 0.

2. CONSTRUCTING A CATEGORY

The goal now is to construct a new category, the category of corre-
spondences, where the morphisms are precisely the correspondences as
defined above. We first need to see that correspondences satisfy the
properties of morphisms; namely, associativity and the existence of an
identity. We will employ the following, which is sometimes taken as an

axiom or can be proved otherwise.

Proposition 2.1 (Projection formula). Given a morphism ¢ : X — Y,

let Ze C(X), 2 € C(Y), we have
0(Z-¢"(2') = ¢.(2) - Z'

Lemma 2.2. Let Ay € Corr(X, X) denote the class of the image of
the diagonal map 0x : X — X x X. Then, for any f € Corr(X,Y)
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and g € Corr(Y, X), we have

Axog=yg, [foAx=f
Proof. We compute:
foAx = (m3)) (M2 (Ax) - 733(f))
= (m3):((Ax X 1y) - (1x X [))

= (71'13)*((5)( X 1y)*((1X X 1y) . ((5}( X 1y)*(1X X f))

Note that 1x x 1y acts as an identity element, so the above becomes:
(m13)+(0x X 1Y)*((5X X 1y)"(1x x f)) = (m13)«(1x x f)
=/

The case for Ax o g is essentially identical. U

Next, we have:
Lemma 2.3. Composition of correspondences is associative.

Proof. For convenience of notation, denote f; ;41 as the correspondence
class of Corr(X;, X;11). The projections ;; are denoted in the standard

way. We see:
faa0 (f23.0 fro) = (m14)s (Tia(fas © fr2) - w3 (f3))

) (13 ((m13) (W35 (fos) - 12 (fi2)) - T34 (fa))
T14)x (([(m13) (735 (fa3) - Tha(f12)] X 1x,) - (1x, X fsa))
T1a)s (M3 X id)o ([(fi2 X 1x,) - (1x, X fo3) X 1y,

- (m3 X idx,)*(1x, X f31))

= (m1a)« ((f12 X 1xy X 1x,) - (1x, X fog X 1x,) - (1x, X Ly, X f34))

Similarly, composing in the other order,

(fsa 0 fag) 0 f12 = (7T14)*(7TT2(f12) T34 (fa10 f23))

= (m1a)x ((frz X Ly X 1x,) - (Ixy X fas X 1x,) - (1x, X 1x, X faa))

14

(
=
= (
=
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Thus the last line of both of the above computations are equal, in which

case composition of correspondences is associative. 0

Definition 2.4. Define the graph I', of a morphism ¢ : X — Y as the
composition

. oy pxidy
F¢:(¢dey)05yi Y —YxY—XxY

Define h(¢) := Ly (1y); note that h(¢) € Corr(X,Y).
Observe that in the above definition, h(idx) = Ax.

Definition 2.5. Define the category of correspondences Corr(k) to be
the category whose objects consist of the objects of Smproj(k) and
whose morphisms are precisely correspondences.
Theorem 2.6. The association
X=X, ¢~ h(o)

is a contravariant functor on Smproj(k) to Corr(k)
Proof. We only need show that for ¢ : 7 — Y, ¢ : ¥ — X, that
h(1) o ¢) = h(¢) o h(1)). Note that by definition,

F¢O¢ = 7T13((F¢ X ldz) o F¢))
Whence

h(@b @) ¢) = (71'13) * ((Fw X ldz)*r¢*(1z)>
Similarly, by definition of composition of correspondences,
() o c(¥) = (m13)« (1x X Tgul12)) - (Tyu(ly) x 12))

In view of the above two expressions, our goal is to show that

(Ix x Tgu(1z2)) - (Cyu(ly) x 1z) = (Fy x idz).Lu(12)
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We compute:
(Lx x Tgu(12)) - (Pys(1y) x 12) = (Ix x Tgu(12)) - (Ty x idz), (1yxz)
= (Ty x idz), (T X idz)" (1x X Tgu(12)) - 1y <7)
— (Ty x id), ((Ty x id7) 75 (Toe(172)) )

Then, note that w3 o (I'y X idz) = idy«z. Thus, the above becomes

(F¢ X idz)*<(71'23 o (FTZJ X ldz))*(r¢*(1z))> = (F¢ X ldz)*(r¢*(1z))

Which shows exactly what we want. Thus, h(y) o ¢) = h(¢) o h(¢)) as
contended. O

The importance of the above gives that we have ”embedded” Smproj(k)
into Corr(k), which is in fact an additive category over Q. That is, all
morphisms in Corr(k) are Q-linear (or R-linear for any other ring) with
respect to all arguments. The sum of varieties in Corr(k) is simply

X @Y, and we can define the tensor product as well:

Definition 2.7. Define the tensor product of objects in Corr(k) as
X®Y = X xY. We may also define the tensor product of morphisms
for f; € Corr(X1,Y1), fo € Corr(Xa, Ys):

J1 @ fo = Tos (775 (f1) - 754(f2))
where 153 1 X7 X Y] X Xo XYy = X7 x Xy x Y] XY is the transposition

switching the order of the middle two terms.

Proposition 2.8. For fi, ¢1 € Corr(X1,Y1), fa, g2 € Corr(Xs,Y3),

we have:

(f1i®f2)o(fi®g)=(fiog)® (f200)
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Lemma 2.9 (Lieberman’s Lemma). Let a € Corr(X, X’), B € Corr(Y,Y"),
and f € Corr(X,Y). Then,

(ax B)(f)=Bofo"a



