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Matrices and projective space

Definition
Projective n-space is Pn

F =
(
An+1 \ {0}

)
/F×. Points of projective

space are thus given by [a0 : · · · : an] ∈ An+1 such that
not all of the ai are 0
[a0 : · · · : an] = [λa0 : · · · : λan] for any λ ∈ F×.

Example: P1
R = S1

We can view P1
F as A1

F ∪ {∞}:
[a : 1] 7→ a [1 : 0] 7→ ∞
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Matrices and projective space

Proposition
There is a 1-1 correspondence between left ideals of dimension n in
Mn(F ) and points in Pn−1

F .

Example

Let J =


 a 0 0

b 0 0
c 0 0

 | a,b, c ∈ F

�` M3(F )

dimF J = 3

Pick any element in J which has nonzero top row:

 1 0 0
2 0 0
3 0 0


We associate to J the point [1 : 0 : 0] ∈ P2

F .
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Matrices and projective space

Example

Let J =


 a 3a 2a

b 3b 2b
c 3c 2c

 | a,b, c ∈ F

�` M3(F )

Pick any element in J which has nonzero top row:

 1 3 2
0 0 0
0 0 0


We associate to J the point [1 : 3 : 2] ∈ P2

F .

Choosing a different element

 2 6 4
1 3 2
1 3 2

 we get

[2 : 6 : 4] = [2 · 1 : 2 · 3 : 2 · 2] = [1 : 3 : 2].
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Matrices and projective space

We may thus associate a geometric object to Mn(F ), and write

V(Mn(F )) = Pn−1
F .

Definition
A division algebra over F is an F -algebra such that every non-zero
element is invertible. It is F -central if

Z (D) := {a ∈ D | ab = ba for all b ∈ D} = F

A division algebra is thus a non-commutative version of a field, and are
often called skew-fields.

Example (Hamilton’s Quaternions)

H = 〈1, i , j , k | i2 = j2 = −1, ij = -ji = k〉 is an R-central division algebra
of dimension 4.
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Severi-Brauer varieties

A similar construction works for any algebra of the form Mn(D).

Defintion
Let D be an F -division algebra. The Severi-Brauer variety associated
to Mn(D) is

V(Mn(D)) =
{

J �` Mn(D) | dimF J =
√

dimF Mn(D)
}
.

Example

If D = F , we have V(Mn(D)) = Pn−1
F .

If D = H and n = 1, we have

V(D) = {x2 + y2 + z2 = 0} ⊂ P2
R.

Note this space has no points over the real numbers.
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Severi-Brauer varieties

V(Mn(D)) is a twisted form of Pn. If F is an algebraic closure of F ,
extending scalars yields

V(Mn(D))⊗F F ∼= Pn−1
F

The points (of minimal degree n) of V(Mn(D)) are in bijection with
subfields L ↪→ Mn(D).

To study Mn(D) and its arithmetic, one studies its subfields and how
they fit together. The above construction gives a geometric object
which parametrizes these subfields.
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Geometry of points

Definition
Let X be an F -variety. The group of zero-cycles on X is the free
abelian group generated by points of X . That is,

Z0(X ) =
{∑

aipi | ai ∈ Z and pi ∈ X
}
.

Two cycles α, β are equivalent if there exists a curve C ⊂ X , and a
rational function f

g on C such that

α− β = zeros
(

f
g

)
− poles

(
f
g

)
.

The Chow group of zero-cycles is then given by equivalence classes of
zero-cycles

CH0(X ) = Z0(X )/ ∼ .
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Geometry of points

X × P1

∞

P1

X

0
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Geometry of points

In a similar fashion, one considers the group of zero-cycles on X with
coefficients that vary.

Construction
Let X = V(Mn(D)).

Points of X are in bijection with subfields of Mn(D).
For any p ∈ X , consider the corresponding subfield Lp ↪→ Mn(D).
Let CH0(X ,K1) = {

∑
(λp,p) | p ∈ X and λp ∈ Lp} and we identify

elements which are equivalent (similar to the previous case).

The group CH0(X ,K1) reflects arithmetic properties of Mn(D) by using
the arithmetic of its subfields.
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Geometry of subfields

Theorem (Panin, ’84)
Let D be a division algebra and X = V(Mn(D)). There is a group
isomorphism CH0(X ) ∼= Z.

Through a geometric lens, all subfields L ⊆ Mn(D) look the same.

Theorem (Merkurjev-Suslin, ’92)
Let D be a division algebra and X = V(Mn(D)). There is a group
isomorphism CH0(X ,K1) ∼= D×/[D×,D×].

The arithmetic of the subfields cannot be aligned as we move
geometrically along the variety V(Mn(D)).
The misalignment can be measured by elements of D×/[D×,D×].
This reflects arithmetic complexity of both D and F .
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Thank you!
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