Geometric study of subfields of some non-commutative algebras

Patrick K. McFaddin
University of South Carolina

Carolina Math Seminar Fall 2018

Matrices and projective space

Definition

Projective n-space is $\mathbb{P}_{F}^{n}=\left(\mathbb{A}^{n+1} \backslash\{0\}\right) / F^{\times}$. Points of projective space are thus given by $\left[a_{0}: \cdots: a_{n}\right] \in \mathbb{A}^{n+1}$ such that

- not all of the a_{i} are 0
- $\left[a_{0}: \cdots: a_{n}\right]=\left[\lambda a_{0}: \cdots: \lambda a_{n}\right]$ for any $\lambda \in F^{\times}$.

Example: $\mathbb{P}_{\mathbb{R}}^{1}=S^{1}$

We can view \mathbb{P}_{F}^{1} as $\mathbb{A}_{F}^{1} \cup\{\infty\}$:

$$
[a: 1] \mapsto a \quad[1: 0] \mapsto \infty
$$

Matrices and projective space

Proposition

There is a 1-1 correspondence between left ideals of dimension n in $M_{n}(F)$ and points in \mathbb{P}_{F}^{n-1}.

Example

- Let $J=\left\{\left.\left(\begin{array}{lll}a & 0 & 0 \\ b & 0 & 0 \\ c & 0 & 0\end{array}\right) \right\rvert\, a, b, c \in F\right\} \Delta_{\ell} M_{3}(F)$
- $\operatorname{dim}_{F} J=3$
- Pick any element in J which has nonzero top row: $\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 0 & 0 \\ 3 & 0 & 0\end{array}\right)$
- We associate to J the point $[1: 0: 0] \in \mathbb{P}_{F}^{2}$.

Matrices and projective space

Example

- Let $J=\left\{\left.\left(\begin{array}{lll}a & 3 a & 2 a \\ b & 3 b & 2 b \\ c & 3 c & 2 c\end{array}\right) \right\rvert\, a, b, c \in F\right\} \triangleleft_{\ell} M_{3}(F)$
- Pick any element in J which has nonzero top row: $\left(\begin{array}{lll}1 & 3 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
- We associate to J the point $[1: 3: 2] \in \mathbb{P}_{F}^{2}$.
- Choosing a different element $\left(\begin{array}{lll}2 & 6 & 4 \\ 1 & 3 & 2 \\ 1 & 3 & 2\end{array}\right)$ we get $[2: 6: 4]=[2 \cdot 1: 2 \cdot 3: 2 \cdot 2]=[1: 3: 2]$.

Matrices and projective space

We may thus associate a geometric object to $M_{n}(F)$, and write

$$
\mathbf{V}\left(M_{n}(F)\right)=\mathbb{P}_{F}^{n-1}
$$

Definition

A division algebra over F is an F-algebra such that every non-zero element is invertible. It is F-central if

$$
Z(D):=\{a \in D \mid a b=b a \text { for all } b \in D\}=F
$$

A division algebra is thus a non-commutative version of a field, and are often called skew-fields.

Example (Hamilton's Quaternions)

$\mathbb{H}=\left\langle 1, i, j, k \mid i^{2}=j^{2}=-1, \mathrm{ij}=-\mathrm{ji}=\mathrm{k}\right\rangle$ is an \mathbb{R}-central division algebra of dimension 4.

Severi-Brauer varieties

A similar construction works for any algebra of the form $M_{n}(D)$.

Defintion

Let D be an F-division algebra. The Severi-Brauer variety associated to $M_{n}(D)$ is

$$
\mathbf{V}\left(M_{n}(D)\right)=\left\{J \triangleleft_{\ell} M_{n}(D) \mid \operatorname{dim}_{F} J=\sqrt{\operatorname{dim}_{F} M_{n}(D)}\right\}
$$

Example

- If $D=F$, we have $\mathbf{V}\left(M_{n}(D)\right)=\mathbb{P}_{F}^{n-1}$.
- If $D=\mathbb{H}$ and $n=1$, we have

$$
\mathbf{V}(D)=\left\{x^{2}+y^{2}+z^{2}=0\right\} \subset \mathbb{P}_{\mathbb{R}}^{2}
$$

Note this space has no points over the real numbers.

Severi-Brauer varieties

- $\mathbf{V}\left(M_{n}(D)\right)$ is a twisted form of \mathbb{P}^{n}. If \bar{F} is an algebraic closure of F, extending scalars yields

$$
\mathbf{V}\left(M_{n}(D)\right) \otimes_{F} \bar{F} \cong \mathbb{P}_{\bar{F}}^{n-1}
$$

- The points (of minimal degree n) of $\mathbf{V}\left(M_{n}(D)\right)$ are in bijection with subfields $L \hookrightarrow M_{n}(D)$.
To study $M_{n}(D)$ and its arithmetic, one studies its subfields and how they fit together. The above construction gives a geometric object which parametrizes these subfields.

Geometry of points

Definition

Let X be an F-variety. The group of zero-cycles on X is the free abelian group generated by points of X. That is,

$$
Z_{0}(X)=\left\{\sum a_{i} p_{i} \mid a_{i} \in \mathbb{Z} \text { and } p_{i} \in X\right\}
$$

Two cycles α, β are equivalent if there exists a curve $C \subset X$, and a rational function $\frac{f}{g}$ on C such that

$$
\alpha-\beta=\operatorname{zeros}\left(\frac{f}{g}\right)-\operatorname{poles}\left(\frac{f}{g}\right) .
$$

The Chow group of zero-cycles is then given by equivalence classes of zero-cycles

$$
\mathrm{CH}_{0}(X)=Z_{0}(X) / \sim .
$$

Geometry of points

Geometry of points

In a similar fashion, one considers the group of zero-cycles on X with coefficients that vary.

Construction

Let $X=\mathbf{V}\left(M_{n}(D)\right)$.

- Points of X are in bijection with subfields of $M_{n}(D)$.
- For any $p \in X$, consider the corresponding subfield $L_{p} \hookrightarrow M_{n}(D)$.
- Let $\mathrm{CH}_{0}\left(X, K_{1}\right)=\left\{\sum\left(\lambda_{p}, p\right) \mid p \in X\right.$ and $\left.\lambda_{p} \in L_{p}\right\}$ and we identify elements which are equivalent (similar to the previous case).

The group $\mathrm{CH}_{0}\left(X, K_{1}\right)$ reflects arithmetic properties of $M_{n}(D)$ by using the arithmetic of its subfields.

Geometry of subfields

Theorem (Panin, '84)

Let D be a division algebra and $X=\mathbf{V}\left(M_{n}(D)\right)$. There is a group isomorphism $\mathrm{CH}_{0}(X) \cong \mathbb{Z}$.

Through a geometric lens, all subfields $L \subseteq M_{n}(D)$ look the same.

Theorem (Merkurjev-Suslin, '92)

Let D be a division algebra and $X=\mathbf{V}\left(M_{n}(D)\right)$. There is a group isomorphism $\mathrm{CH}_{0}\left(X, K_{1}\right) \cong D^{\times} /\left[D^{\times}, D^{\times}\right]$.

- The arithmetic of the subfields cannot be aligned as we move geometrically along the variety $\mathbf{V}\left(M_{n}(D)\right)$.
- The misalignment can be measured by elements of $D^{\times} /\left[D^{\times}, D^{\times}\right]$.
- This reflects arithmetic complexity of both D and F.

Thank you!

