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1 Categories, Functors, Natural Transformations and Presheaves

1.1 Categories

Definition 1.1. A category C consists of the following data:
(C1) a collection of objects, Ob(C )
(C2) for every pair A, B ∈ Ob(C ) a set HomC (A,B) of morphisms from A to B
(C3) for each A ∈ Ob(C ) a distinguished morphism 1A ∈ HomC (A,A)
(C4) for every three objects A, B, C ∈ Ob(C ) a function “composition”

HomC (B,C)×HomC (A,B)→ HomC (A,C)

(f, g) 7→ f ◦ g = fg

satisfying the following axioms:
(A1) Associativity : If

A
h // B

g // C
f // D ,

then (fg)h = f(gh).
(A2) Identity : If

A
f // B ,

then f1A = f and 1Bf = f .

The utility of the above definition is that there are plenty of examples to consider. Some
of the most common examples are given below.

1.1.1 Examples

• Let C be a category with Ob(C ) = {∗} and HomC (∗, ∗) = 1∗.

• Let C = Sets. Then Ob(C ) = “all sets,” (or at least all sets in some fixed universe) and
HomC (A,B) = {f : A→ B}, the set of functions from A to B.

In a sense, categories arise in two different flavors, big or small. The above example is
that of a big category. The following example is a small category.

• Fix a set S. Define the category C with Ob(C ) = {T | T ⊆ S} and HomC (A,B) =
{f : A ↪→ B}.

• Let G be a group. Let CG be the category with Ob(CG) = {∗} and Hom(∗, ∗) = G, the un-
derlying set of G. Also, 1∗ = idG and the composition function is simply the group law of G.

The above example works equally well in the case that G is only a monoid.
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• Let C = Top. Then Ob(C ) = all topological spaces and HomC (X,Y ) = {f : X → Y | f
is continuous}.

• Let X be a topological space. Let Op(X) be the category of open sets of X. Then
Ob(Op(X)) = {U ⊆ X | U is open} and HomOp(X)(A,B) = inclusions.

Definition 1.2. Let C be a category and let A, B ∈ Ob(C ). We say A is isomorphic to
B, written A ∼=C B if there exists a morphism f : A→ B and a morphism g : B → A such
that fg = 1B and gf = 1A.

Categories are a particular example of an object which has a certain structure. Naturally,
one can define maps between categories which preserve this categorical structure. These
maps are called functors.

1.2 Functors

Definition 1.3. Let C and D be categories. A covariant functor F : C → D is a rule
F : Ob(C )→ Ob(D) together with, for each pairA,B ∈ Ob(C ) a function F : HomC (A,B)→
HomD(F (A), F (B)) satisfying the following axioms:
(F1) F (fg) = F (f)F (g).
(F2) F (1A) = 1F (A).

Definition 1.4. A contravariant functor is as above with the alteration

F : HomC (A,B)→ HomD(F (B), F (A)).

Remark 1.5. If C is a category we can define C op as Ob(C op) = Ob(C ) and HomC op(A,B) =
HomC (B,A). Thus, we may think of a contravariant functor F : C → D as a covariant
functor C op → D .

Functors will turn out to be our main object of study. We will begin with a category in
which we are interested, such as Schemes or Top, and we will replace it by a new category
whose objects are functors taking objects of our original category to the category of sets.
To gain a familiarity with functors, we begin with a few examples.

1.2.1 Examples

• F : Groups → Sets. F takes a group and maps it to its underlying set. It forgets its
group structure and we call it a forgetful functor.

• F : Sets→ Groups via S 7→ 〈S〉, the free group generated by S.

• π1 : Top∗ → Groups. Here, Ob(Top∗) = all pointed spaces.

• HoTop. Ob(HoTop) = Ob(Top) and HomHoTop(X,Y ) = HomTop(X,Y )/ ∼, where ∼
denotes homotopy equivalence.
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• H∗(−) : Top → Ab or H∗(−) : Top → Ab, the homology and cohomology groups of a
topological space. We may also realize H∗(X) as HomHoTop(X,K(Z, ∗)), where K(Z, ∗) is
the Eilenberg-MacLane space.

• Let C be any category and A ∈ Ob(C ). We can define a contravariant functor
F : C → Sets by B 7→ HomC (B,A). That is, associated to every object in C is a
contravariant functor. It has the property that given a map B → C, there is a natural way
of taking a morphism C → A to a morphism B → A via composition:

B

  @
@@

@@
@@

// A

C

??~~~~~~~

Thus, for each object A, we may associate the functor FA : C → Sets via FA(B) =
HomC (B,A). If f : B → C then we have a map FA(f) : FA(C) → FA(B) given by
FA(f)(g) = gf for g ∈ HomC (C,A).

The above example is the most important example given, as we will encounter it again
and again. Using this construction, we may take objects in a category of interest and rein-
terpret them as functors or to obtain functors associated to our objects.

Definition 1.6. Functors of the form

FA : C → Sets

are called representable with representing object A.

Definition 1.7. A presheaf is any contravariant functor C → Sets

1.3 Natural Transformations

Definition 1.8. Let C and D be categories and let F,G : C → D be functors. A natural
transformation α : F → G is a rule which associates to each A ∈ C a morphism α(A) :
F (A)→ G(A) such that for all f : A→ B

G(f)α(A) = α(B)F (f).

That is, the following diagram is commutative:

F (A)
α(A) //

F (f)
��

G(A)

G(f)
��

F (B)
α(B) // G(B)
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2 Presheaves and Limits

Recall that if C and D are categories and F,G : C → D are functors, a natural transfor-
mation T : F → G is a collection of maps TA : F (A) → G(A) for each A ∈ Ob(C ) such
that the following diagram commutes:

F (B) //

��

G(B)

��
F (A) // G(A)

We observe that Fun(C ,D) is a category with Ob(Fun(C ,D)) = Fun(C ,D) and
HomFun(C ,D)(F,G) = Nat(F,G), natural transformations from F to G.

2.1 Equivalence of Categories

Definition 2.1. Let F : C → D . We say that F is faithful if for all A,B ∈ Ob(C ),

HomC (A,B)→ HomD(F (A), F (B))

is injective. F is full if
HomC (A,B)→ HomD(F (A), F (B))

is surjective. If F is both full and faithful, we say that F is fully faithful. The functor F is
essentially surjective if for all A ∈ Ob(D), there exists B ∈ Ob(C ) such that F (B) ∼=D A.

Definition 2.2. A functor F is an equivalence if it is fully faithful and essentially surjective.

2.1.1 Examples

• Let C be the category of all finite subsets of N. Let D be the category of finite sets. Then
F : C → D given by inclusion is an equivalence of categories.

• Spec : CommRingsop → AffSch defined by R 7→ SpecR is an equivalence of categories.

We now give an alternative definition for an equivalence of categories.

Definition 2.3. A functor F : C → D is an equivalence if there exists a functor G : D → C
such that F ◦G ∼=Fun(D ,D) 1D and G ◦ F ∼=Fun(C ,C ) 1C .

Recall that if C is a category, the presheaves on C , Pre(C ) = Fun(C op,Sets), con-
travariant functors from C to Sets. Given A ∈ Ob(C ) we obtain FA ∈ Ob(Pre(C )), where
FA(B) = HomC (B,A). This gives a functor F : C → Pre(C ). We will see that this functor
is in fact fully faithful, a consequence of Yoneda’s Lemma, but is not necessarily essentially
surjective.
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Example 2.4. Let C = Top. Given a topological space X, we can, in a sense, reconstruct it
by considering maps HomC (∗, X) = “X” (the underlying set of X). Using the functor FX ,
we can recover X by looking at the value of FX on a single point, FX(∗). One can think
of HomC (∗, X) = FX(∗) = as the “points of X,” and should think of FX(Z) as continuous
families of points in X parameterized by Z ⊂ X, or perhaps a Z-valued point of X.

The idea of Yoneda’s Lemma is the observation that if we have topological spaces X
and Y and a continuous map f : X → Y , this gives a way of taking Z-valued points of X to
Z-valued points of Y , FX(Z)→ FY (Z). Occasionally, the notation X(Z) is used to denote
FX(Z). If we have maps of Z valued points for every Z, we can use this information to
recover f . Suppose T : FX → FY is a natural transformation. Consider T (X) : FX(X) →
FY (X). But 1X is an X-valued point of X and FY (X) = HomTop(X,Y ). The image of 1X
will give a map from X to Y . It turns out that the two above constructions are inverses
of each other. That is, if we start out with a continuous map we have a corresponding
map between the functors FX and FY . Looking at what this natural transformation does
on X-valued points, we recover our original map. Likewise, if we begin with a natural
transformation between two functors and consider the image of the identity map on X,
we obtain a continuous map such that the corresponding map of functors is the natural
transformation we started with.

Lemma 2.5. If A ∈ Ob(C ) and G is a presheaf on C , then G(A) = HomPre(C )(FA, G).

Proof. If g ∈ G(A), we want a map FA(B)→ G(B). Let f ∈ FA(B). Then

f : B → A.

Applying G, we have
G(f) : G(A)→ G(B).

Since g ∈ G(A), f 7→ G(f)(g). Thus, f 7→ G(f)(g) defines a map corresponding to the
element g ∈ G(A). Conversely, given T : FA → G. 1A ∈ FA(A). TA(1A) ∈ G(A). Thus,
TA(1A) is the element of G(A) corresponding to T .

Example 2.6. Let G = FB. Then FB(A) = HomPre(C )(FA, FB). But FB(A) = HomC (A,B).
Thus, we obtain the same identification as in the discussion above: maps from A to B are
the same as maps on the corresponding presheaves.

In the above example, since we have HomC (A,B) = HomPre(C )(FA, FB) we can see that
the natural map C → Pre(C ) is fully faithful.

The general way that we will utilize the above lemma, is that we will start out with a
category in which we are interested, which will usually have a geometric flavor, and find
that it does not have enough objects or does not have all of the things we want. We will
extend to the category of presheaves on our original category which properly contains our
original category but which loses no information since the Hom-sets are the same. The
category of presheaves contains many more objects and desired properties.
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2.2 Limits

Definition 2.7. Let C be a category. Given a diagram in C , which consists of objects
{Di}i∈I and morphisms {fα} where fα : Dd(α) → Dr(α), we say that E = lim

−→
Di, the direct

limit or inductive limit or colimit, if we have morphisms

ϕi : Di → E

such that for all fα
Dd(α)

f(α) ##G
GG

GG
GG

GG

ϕd(α) // E

Dr(α)

ϕr(α)

=={{{{{{{{

commutes, and such that if F is any object with maps ψi : Di → F such that for all fα

Dd(α)

f(α) ##G
GG

GG
GG

GG

ψd(α) // F

Dr(α)

ψr(α)

=={{{{{{{{

commutes then there exists a unique morphism E → F such that

F

Dd(α) //

f(α) ##G
GG

GG
GG

GG

55kkkkkkkkkkkkkkkkkk
E

<<

Dr(α)

OO

FF����������������

commutes. Similarly, we may define the inverse limit or projective limit or limit, written
lim
←−

Di, by using the same definition as above, reversing the direction of the ϕi and ψi.

2.2.1 Examples

• Let C = Sets. Let {S1, S2} be our collection of objects and let ∅ be our collection of
morphisms. Then S1 t S2 = lim

−→
Si and S1 × S2 = lim

←−
Si.

• Let C = Sets. Let
S1

S0

>>}}}}}}}

  A
AA

AA
AA

S2
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be our collection of objects and morphisms. Then lim
−→

Si = S1tS0S2 and lim
←−

Si = S1×S0S2.
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3 Schemes and Topology

As we have seen, for a topological space X, we may consider the category Op(X) of open
sets of X. We have

Pre(Op(X)) = Fun(Op(X)op,Sets).

Example 3.1. Let F : Op(X)op → Sets defined by U 7→ F (U) = Cont(U,R), all continuous
real-valued functions on U . For U = U1 ∪ U2, we have

F (U) = {f1 ∈ F (U1), f2 ∈ F (U2) | f1|U1∩U2 = f2|U1∩U2}.

In general we may consider arbitrary covers {Ui → U}i∈I .

Definition 3.2. A presheaf F on Op(X) is called a sheaf if for all open covers {Ui → U}i∈I ,
F (U) ∼= {(fi) ∈

∏
F (Ui) | fi|Ui∩Uj = fj |Ui∩Uj}.

We will use the term “a sheaf on X” to mean “a sheaf on Op(X)”. Alternately, F is a
sheaf if we have

F (U) = lim
←−

(
∏
i

F (Ui) ⇒
∏
(i,j)

F (Ui ∩ Uj)).

Notice that for any sheaf F , we have

F (∅) = lim
←−

(
∏
∅

→
∏
∅

) = ∗.

3.0.2 The Category Top

Each object in Top has a notion of an open cover.

Definition 3.3. Let U ∈ Ob(Top). An open cover {Ui → U} is a collection of open subsets
Ui ⊆ U together with inclusion maps.

Definition 3.4. A presheaf F on Top is a sheaf if we have the same definition given above,
for all U and for all open covers.

3.0.3 Examples

• F (U) = Cont(U,R) or F (U) = Cont(U,X) for X ∈ Ob(Top). Observe that for any
X ∈ Ob(Top), the presheaf FX associated to X is actually a sheaf.

• Let F (U) = H i(U,R). Then F defines a presheaf but not a sheaf.

We now come to the notion of a scheme. The category Schemes is an algebraic analogue
of the category of manifolds. In the case of real manifolds, an arbitrary manifold is obtained
by gluing open subsets of Rn. There is an analogous construction of general schemes from the
gluing of affine schemes. As we have seen, we have an equivalence AffSch = CommRingsop

given by R 7→ SpecR. Affine schemes are the spaces whose geometry is encoded in the
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“good/regular” functions on the space. For example, a ring R is the ring of regular functions
on the affine scheme SpecR. This is similar to the case of Rn, in that if one knows all of
smooth or continuous functions on Rn one, in particular, has the coordinate functions and
can thus reconstruct Rn.

Example 3.5. Let R = C[x1, ..., xn]. Then SpecR = An
C, affine n-space. Any geometry that

we would like to study on An
C can be studied in the polynomial ring R.

Basic open subsets of SpecR are given by inclusion maps

SpecRf → SpecR

corresponding to the ring maps

R→ Rf = R[f−1] = R[x]/(xf − 1).

Often the notation SpecRf = Df is used. Notice that {SpecRfi
→ SpecR} is a cover if

(fi) = R. Indeed,
⋃

SpecRfi
is the open set on which at least one of the fi’s is nonzero.

The complement is the set where all fi’s vanish. Since (fi) generates R, we may write
1 =

∑
aifi. If we have a point at which all fi’s evaluate to zero, then we have 1 = 0, so

there cannot be such a point.
We have now given the collection of affine schemes a notion of a topology, what it means

to have an open inclusion and ultimately what it means to have a cover. With this notion
of an open cover we now have a notion of a sheaf on AffSch. In the case of manifolds, we
would like to glue open subsets of Rn to obtain our manifold, but our manifold will not
necessarily be an open set in Rn. We must look outside of our original category to get that
manifold. To say a manifold X is the result of gluing open sets in Rn, means that X = lim

−→
U . In the category of open subsets of Rn, one does not necessarily have all of these limits.
If we move to the category of presheaves, taking limits does not create such a problem.
Unfortunately, they are not necessarily the desired limits. The limits taken in the category
of presheaves may not agree with the limits that exist in the original category. The way
around this problem is look at the category of sheaves, as opposed to presheaves. We are
going to have limits of sheaves but the limits will be determined by local data. If X is a
manifold that is a limit in the category of presheaves of U0, U1, U2 then

Hom(Y,X) = Hom(Y, U1) tHom(Y,U0) Hom(Y, U2).

However, this is not the right way of gluing the Hom-sets. One must define maps into X
locally on the domain space.

How do we construct the manifold X? We consider Shv(Op(Rn)). Corresponding
to each of the objects U0, U1, U2, we have the presheaves FU0 , FU1 , and FU2 which they
represent. These presheaves happen to be sheaves as we have seen previously. Define
X = lim

−→
(FU0 ⇒ FU1 t FU2) as a limit in Shv(Op(Rn)) as opposed to presheaves.

Definition 3.6. The category Schemes is the subset of Shv(AffSch) generated by AffSch ↪→
Shv(AffSch) via X 7→ FX and limits.
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We would like to do topology with objects like An
C. However, it is much more difficult

to get our hands on the topology from the algebra. The way that we will try to repair
this gap is the following: A scheme is a certain kind of presheaf AffSch → Sets. Let
Spec C[x, y] = F . Then F (Spec C) = Hom(Spec C → Spec C[x, y]) = Hom(C[x, y],C).
Now, a map in Hom(C[x, y],C) is just an evaluation map x 7→ a and y 7→ b, which gives a
pair (a, b). The problem with points is that they are discrete. This does not give a topology,
only a set. We would like to give a presheaf AffSch → Top instead. But it is difficult
to algebratize Top in a natural way. Instead, we will deal with the category of simplicial
sets which we will denote sSets. Simplicial sets are a combinatorial way to manufacture
topological spaces by abstractly gluing simplices together. The advantage is that in some
way Top and sSets are equivalent, and it is much easier to give a presheaf AffSch→ sSets.
This will lead to the study of simplicial schemes, which will be our main objects underlying
the necessary machinery.
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4 Grothendieck Topology and Simplicial Sheaves

Recall that a presheaf F is a sheaf if given any open cover {Ui → U}i∈I we have an equilizer
diagram

F (U)→
∏
i∈I

F (Ui) ⇒
∏

F (Ui ∩ Uj).

Definition 4.1. Let C be a category. A Grothendieck topology T on C is a collection
cov(T ) of sets of morphisms {Ui → U}i∈I in C which are called coverings, satisfying the
following:
(T1) If {Ui → U} ∈ cov(T ) and V → U is any morphism then Ui ×U V exists for each i
and {Ui ×U V → V } is a covering.
(T2) If {Ui → U} and {Vij → Ui} are coverings then {Vij → U} is a covering.
(T3) If ϕ : U → U ′ is an isomorphism then {U → U ′} is a covering.

Definition 4.2. A site is a pair (C , T ) consisting of a category C and a Grothendieck
topology T on C .

4.0.4 Examples

• Op(X).

• Sets with surjective families of maps.

• Schemes.

• G-Sets, the category of sets admitting a G-action for a group G.

Definition 4.3. A sheaf on a site (C , T ) is a presheaf F : C op → Sets such that if
{Ui → U} ∈ cov(T ), then

F (U)→
∏

F (Ui) ⇒
∏

F (Ui ×U Uj)

is an equalizer diagram for all covers.
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